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The authors wish here to provide a basic introduction to the signal processing
tools and techniques necessary for the purpose of detecting a signal corrupted
by random noise. This is the core problem of Detection Theory. It is typically
encountered, among various other scientifical and technological research areas, in
the experimental study of Gravitational Waves (GW), where the signal is often of
an electrical nature and is provided by a suitable transducer, which can be referred
to, in general terms, as an antenna. Since the signal to be detected is rarely
completely known, its shape can vary according to many unknown parameters,
such as amplitude, frequency, direction of arrival etc. The evaluation of those
parameters is thus essential for the correct determination of the GW to be detected.
The theory and techniques for a reliable evaluation are referred to as Estimation
Theory. The fundamental role of noise, as the main drawback in the process of
detection and estimation, makes it necessary to introduce appropriate tools for
its understanding and modelling: the theory of Random Processes provides the
background for this purpose and for the successful exploitation of noise models for
the detection and estimation problems.

This tutorial paper is organized in three sections: the first is a brief review of the
theory of Stochastic Processes (a synonym for Random Processes), of which the
reader is assumed to have already a basic knowledge; the second is an introduction
to Detection Theory, discussing different optimization criteria for the detection
problem, under binary or multiple hypotheses, and leading to the design method
of a receiver operating in the common case of Gaussian Noise. The third section
deals with Estimation Theory: a survey of the parameters estimation problem
under different optimization criteria is given, based on the results of the previous
section; some analytical tools for evaluating the reliability of the derived estimators
are also introduced.

The prerequisites for a full understanding of the following material are: a good
knowledge of the Theory of Probability and its main results and theorems, about
which the reader is assumed to have taken university level courses, and a knowledge
of the theory and techniques of Fourier Analysis, with which the reader is also
assumed to be familiar.
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1 Review of Stochastic Processes

When a physical quantity, such as an electrical field or a gravitational field,
is measured for the purpose of gaining a certain amount of information on it,
it is implicit that its value is, a priori, not known nor predictable. When the
same quantity varies in time, the function describing time variations is called a
signal: in order for a signal to bear some useful information it is thus necessary
that it varies in an unpredictable way or, in other words, that it is a random
signal. Those random variations may be caused by an appropriate mminm.:
as happens in electrical digital communications where an electrical field is
varied by a modulator according to some data to be transmitted, or rather be
intrinsic in the physical quantity to be measured, asis the case for gravitational
waves where the evolution of the astrophysical source is responsible for its
generations. .

Stochastic Processes are the mathematical entity for modelling this kind
of signals; one possible point of view is to think of a stochastic process as
a whole family of functions of time, each function describing one among all
of the possible evolutions of the physical quantity to be observed, thus each
function being a determinisiic signal. The observation is supposed to oﬁoﬁ.&
along the whole infinitely long time axis and thus, once the ovmozwﬁoa is
performed, the shape of the unknown signal is completely &oaona_.no&.w:m the
process is said to have taken one of its sample functions or realizations. .>m
depicted in Fig. 1, it is useful to remind the similarity of this Euvnomnr. with
the classical description of a Random Variable (RV): prior to the execution of
a random experiment all possible outcomes S; of a RV, the so called ..53.?@
space S, is needed to describe the variable itself, while after the observation
of the actual outcome, the variable takes a certain value, or, in other words,
a particular determination.

X o~ ,&-|}W\ o w_/ /d
H..\ o i - T e "
.’ ..V\[Ii'll‘ﬁ .
T % N E _

/ T e wu \

Figure 1. Correspondence between determinations of a random variable and realizations of
a stochastic process.
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Thus, a stochastic process is a family of signals (its realizations), each
describing the same physical quantity (a voltage, a photon flux power ...),
where it is not a priori known which signal will experimentally be observed.
A process is often denoted by a capital symbol, like X(¢), to distinguish it
from ordinary functions, or otherwise X(¢;s;) to underline the analogy with
RVs, as if the observed signal depended on the outcome s; of an experiment
defined on a probabilistic space S.

Another useful point of view for defining a process is gained by observing
its value (i.e. the measured value of the physical quantity that the process
represents) at a given time ¢;. Prior to the observation, the value X (215 8:) that
the process will take depends on which realization will be observed, and is thus
a RV X; whose outcome depends on s;. Similarly, by observing the process
at an n-tuple of times (¢, t3,...,t,), a random vector X=(X1,Xz,...,X;) is
obtained, as shown in Fig. 2 for n = 2. A process can then be tought of as
a collection of a noncountable infinity of random variables X;, each extracted
by observing the process at any possible time t;.
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Figure 2. Random variables X; extracted from the observation of a process; 3 sample
functions are shown.

If, on the other hand, in the expression X(t;s;) it is the second variable
8; that is fixed, the process is reduced to a deterministic signal, i.e. one of its
sample functions. If both variables are fixed, X(¢;;s;) is trivially a number.
In the following we will usually omit the dependence on the probabilistic
variable s;, and denote a process by X (t). The probabilistic approach relates
any observation X(t) of a process to a RV X: as a random variable, X
can be described by the usual probabilistic functions, namely the Probability
Distribution Function (PDF)

Fx(z;t) = P{X(t) < =z}

where P,{A} denotes the probability of an event A, or equivalently its
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first derivative, the probability density function (pdf)

fx(z;t) = Illmwwwﬁs

These functions depend on two variables: the real number z and the
observation time t, thus a knowledge of the pdf, or the PDF, for every possible
t would be desirable; all these functions, for every t, constitute the first order
statistics of the process. Despite the difficulty of practically obtaining all
the first order statistics, they would not even be sufficient for a complete
probabilistic description of the process X (t): higher order statistics, such as
those of second order

NﬂNAHH.Hnw:,swv = MUQ..H;X‘QHV <z DN‘A“NV < HNW

ms.ﬁNA.\E T9;t1, suv
fx (@1, xa5t1,t3) = mahmsw

or, in general, n-th order, fx (21,22, ..., Za; t1, {2, ..., 1), for n arbitrary large,
would be needed. Given the statistical correlation of the RVs X; (their out-
comes all depend on the same realization X (¢; ;) of the process), n-th order
statistics cannot be derived from lower order statistics.

1.1 Ensemble averages

Usually, a complete statistical description of a process is not needed: it suffices
to know some cumulative values yielding information about the realizations
in the average. The process mean value, defined as

+00

nxt = E[X(t)] = \. zfx(z;t)dz
- O

where E[ ] is an ensemble average, i.e. the value of the process N at zz.:w t
is averaged over all possible realizations, is a deterministic function of time
giving the shape of the mean realization. Even though nx (t) could not be one
of the possible realizations of the process, it gives the a priori expected value of
X at time ¢. Another fundamental function is the process autocorrelation,
defined as

+oc +oc
mwum:fsmv = @ANA?.VNQNV_ = ,\. ,\. &HHN\NAHT wa:.suv&u‘.pkﬁ.w

where, for a couple of observation times (%1, t2), Rx measures the correlation
of the RVs X; = X(t;) and X, = X(t2).
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The mean value can be computed if the first order statistics are known;
similarly, the autocorrelation requires the second order statistics for its ana-
lytical computation: thus mean value and autocorrelation are first and second
order ensemble averages, respectively. But, as happens for the average values
of random variables, if these ensemble averages are, for some reason, known, it
is anyway not possible to derive the first and second order statistics. Another
useful second order ensemble average is the autocovariance

¢x (t1,t2) = E[(X(t1) —nx (81))(X (22) — nx (22))] = Rx (t1,t2) — mx (t1)nx (2)

that can be computed based on the previously introduced mean value and
autocorrelation. As for the covariance in the theory of random variables, ¢x
measure the statistical dependence between the two RVs X(¢;) and X(¢2).
The last important average value for a process is the mean square value

Px(t) = E [|X(1)’] = Rx(t,1)

measuring the average square magnitude of the process at time ¢. For the
computation of all the four mentioned averages, only first and second order
statistics would be needed.

The Harmonic process

As an example we shall consider a process X(t) whose realizations are
sine waves of fixed amplitude and frequency, having a random initial phase 6.
When 0 is uniformly distributed over the interval [0,27], the process is called
harmonic: its general expression is

X (t) = acos(2r fot + 6)

with RV 8 uniform in [0,27], and two examples of its realizations are shown
in Fig. 3 together with the pdf of 6.

xAr 0, f
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Figure 3. Sample functions of an harmonic process, observed at times t; and t;.

The harmonic process thus represents a sine wave starting at a completely
random time and can be practically thought of as the output of a stable os-
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cillator that is turned on at an unknown time. It is one of a wide class of
processes, called parametric processes, whose peculiarity is the explicit ana-
lytic dependence of the process expression on one or more random parameters.

We shall now proceed with the calculation of the previously introduced
ensemble averages: the mean value is, by the theorem of expectation, equal
to zero

27
1
nxt = E[X(t)] = ,\ 7% cos(2mfot + 6)d6 = 0
0
while the autocorrelation, through some trigonometric simplifications, takes
the following expression

ma“—

Rx(t1,t2) = E[X(t1)X(t2)] = .\. 2® oOmAma\o?+$oOmAmawosN+$&®H
0

a?

=< cos(2m fo(t1 — t2))

that only depends on the difference between the chosen observation times.
The process autocovariance and mean square value are:

2
px(ti,ta) = Rx(tn,t2)  Px(t) = Rx(t,1) = 5

1.2 Stationarity

We have just shown that, for the harmonic process, the mean value is in-
dependent of the observation time t (it is constant and equal to zero) and
the autocorrelation only depends on (¢; — t2). These particular properties
shown for the ensemble averages of this process are common to a wider, and
extremely important, class of processes: any process with the two mentioned
properties is called Wide Sense Stationary (WSS). For these, the mean
value 7x is thus constant and the autocorrelation Rx(7) is expressed with
only one time variable 7 =#; — ».

Another definition is that of Strict Sense Stationary (SSS) processes:
a process is said to be SSS if its statistical properties are invariant to a shift
of the time origin. In other words, it can be said that the sample functions
of a SSS process have the same probability of being observed with any time
displacement. Therefore, given X(t), its statistics are the same of the process
X (t—to), whose realizations are a time displaced version of those of X(t), and
are equally likely to happen. Having the same statistics implies, for the first
order statistics, fx(z;t) = fx(z;t — to), for any to; thus this first order pdf
must be independent of the observation time and only depends on the variable
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z. Resorting to the definition of mean value, it is easy to show that nx must
be constant and independent of time. A similar reasoning can be applied
to the second order statistics too: if the process is SSS, Fx (21, 25t1,8) =
Fx (21, ®2;t1—t0,t2—10) must hold, and then these second order pdf must only
depend on the difference of the two time arguments. Through the definition
of autocorrelation, also Rx(7) will depend only on the difference = between
the observation times.

For any SSS process it is then demonstrated that it obeys the two proper-
ties defining the class of WSS processes and thus that the first class includes
the second as a subset. SSS is indeed a much more strict definition since it
is based on the complete statistics of the process, while WSS only requires
some average values to respect some properties. It is then evident that the
implication SSS=WSS cannot be reversed; anyway it must be noted that the
definition of WSS is much easier to verify in practice, as has been done for the
harmonic process, than that of SSS. From now on we will concentrate mainly
on the important class of WSS processes, showing the meaning and properties
of their autocorrelation.

The following equality

Rx(-7) = E[X(t1)X(t + 7)) = E[X(t2 — 7)X(t2)] = Rx ()

shows that Rx must be an even function of 7; moreover, since Rx(0) =
E[X?*(t)] , the autocorrelation must have a positive value on the origin of
the 7 axis. A third property, that we will not demonstrate, states that the
maximum absolute value for Rx must be reached on the origin, analytically
|[Rx(T)| < Rx(0). Fig. 4 shows pictorially the implications of these properties
on the graphic of the autocorrelation for WSS processes: the second function
shown is not allowed since it is not even, the third is even but has a negative
value on the origin and the fourth respects the first two properties but has its
absolute maximum on the two sidelobes rather than on the origin.

not allowed not allowed

Figure 4. Some graphical properties for the autocorrelation of WSS processes.

As previously outlined, Rx(7) is the correlation between the two RVs
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X(t) and X(t + ) and correlation is, for RVs, a measure of their statistical
dependence: if, for instance, RVs X(t) and X (¢ + 7) are independent for a
certain value of 7, their correlation equals the product of their mean values and
thus Rx(7) = nx(t)nx (t+7), while the autocovariance ¢ x(7)will be equal to
zero. For WSS processes, the value of autocorrelation and autocovariance is
the same for any time displacement of the observation times, provided their
difference is fixed; then, if the autocovariance has a finite duration on the
axis, being zero outside a finite interval [-M,M], M can be regarded as the
memory of the process. The reason for this is that any two observations of
the process at times differing by more than M yield two uncorrelated random
variables.

Another useful interpretation for the autocorrelation of WSS processes is
gained by defining their power. Thinking of the process as a random signal
conveying energy, if, for instance, X () is a voltage or current signal, it can be
applied to a resistive load of 1Q. This way, the instantaneous power dissipated
on the load at time ¢ is | X (¢)|2, which is a RV whose expectation equals the
WSS process mean square value Px, independent of . For a single realization,
the time average of the dissipated power is

17
muNA.wwv = ﬂ._.—la‘uwo oT > _N.Q“ .w—.v_u&s

which is still a random variable, as underlined by the dependence on s;.
The ensemble average over all realizations of this RV is defined as the power
of the process. If the process is WSS, this average is constant and equals
the previously mentioned average of istantaneous powers Px:

1 (T

Px = E[Px(s;)] = Jim o E[| X (t; s;)|%]dt

the expectation in the last integral being constant and equal to Rx(0).
Thus the power of a WSS process is constant and equal to the value of its
autocorrelation for 7 = 0. We will further exploit the relationship between a
process power and its autocorrelation, after introducing the topic of process
filtering.

1.3 Filtering

A filter is defined as a Linear Time-Invariant (LTI) system; as usual in sys-
tems theory, such systems are characterized by their response to a Dirac delta
pulse §(t) applied at their input: the output is referred to as the impulse
response h(t) of the system. The general relationship between the input and
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the output of a filter is given by the convolution of the input signal with the
system’s impulse response, mathematically defined as

+Oo
@QVH .\, a???lﬂv&ﬂ”aﬁv*i&
—00
where z(t) is the input signal and y(t) is the output. Signal filtering can as well
be performed in the frequency domain, resorting to the properties of Fourier
Transforms: by the theorem of convolution, the output signal’s transform
is simply given by multiplying the transform of the input signal with the
system transfer function H(f), which is defined as the Fourier transform of
the impulse response, according to the simple equation Y (f) = X(f)H(f).
When the input to a LTI system is a stochastic process instead of a
deterministic signal, the output is also a stochastic process whose realizations
are the filtered versions of the realizations of the input process, being the
system deterministic. It is then useful to compute some ensemble averages
for the output process, once this averages are given for the input, in order to
explicit how the filter acts on the process as a whole. If z(¢) is one possible
realization of the input process, then performing convolution with A(t) and
averaging with respect to all the realizations gives mean value of the output
process.

ny(t) = E * \. +8 2(T)h(t — ai = \ - 1e(T)h(t — 7)dT = 1 (t) % (1)

(e} —0C
Computing the autocorrelation of the output process, similarly yields

Ry(t1,t2) = E ﬁ \. JHO (ty — 7)h(r)dr \ " z(ts — u)h(u)du

—o0

_ \“ Ho \. Hog Ra(ty — 7,12 — w)h(r)h(u)dudr

The two above equations can be further simplified when the input process
X (t) is WSS

+8
S\H dN\. iﬂv&ﬂ Nux?v“wk?.v*il*ill
— 00

which shows that also the output process obeys the two properties defining
wide sense stationarity. It can then be stated that linear filtering preserves
WSS; it could be also demonstrated that also strict sense stationarity is pre-
served. This is a nontrivial result, that does not hold for other kinds of
systems, such as nonlinear memoryless which preserve the WSS but not the
SSS properties.
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1.4 Power Spectral Density

The last equation, relating the autocorrelations of the input and output
processes of a filter, is more easily expressed in the frequency domain,
where the double convolution is tranformed into a product: F[Ry(7)]
F[Rx(7)|H(f)H(—f), where F[.] denotes Fourier transform and H(-f)
H*(f) for real systems, i.e. for systems having a real impulse response. It is
not clear, however, at this stage what such transform could possibly mean.
If, however, we introduce the symbol Sx(f) = F[Rx(r)], and recalling the
properties of Fourier transforms, the mean power of the WSS process X(2)
can be obtained through the integration of Sx(f). Moreover, suppose to ap-
ply the process X(t) at the input of an ideal passband filter: the situation
is depicted in fig.5. Since the filter is real, a multiplication of S x (f) by the
square magnitude of the transfer function H(f) gives Sy ()

Sy (f) = Sx(f)|H(f)?

and since H(f) is equal to one in its passband and zero elsewhere, Sy (f) is
nothing but a slice of the function Sx(f).

muﬁ
TN, B

Figure 5. Power spectral density of an ideally bandpass filtered process.

We know that the mean power of the output process is
+00

Py = Ry(0) u\ Sy(f)df >0
— 00
which is the area of the shaded region in Fig. 5. Supposing the filter H(f)
has a narrow band centered around the frequency fo, it suppresses almost
all the frequency components of the input process’ realizations but those in
the neighbourhood of fo: then it can be said that the mean power of the
output process coincides with the power of the input process pertaining those
frequencies only. Since, for an extremely narrowband filter, this power is
proportional to Sx(fo), the conclusion is that the introduced function Sx (f
is a description of how the mean power of the input process is distributed
on the frequency axis. This conclusion is the celebrated Wiener-Kintchine
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theorem: Sx(f) is called the Power Spectral Density (PSD) of the WSS
process X (t) and, from the above reasoning, it is implied that it must be a
nonnegative function whose integral on the whole f axis yields the mean power
Px. A similar relationship holds for the so called covariance spectrum
®y (f), which is defined as the Fourier transform of the autocovariance of the
process Y (&)

oy (f) = Flov ()] = ex () H(S)?

Since we stated that the duration of the autocovariance is related to the
noH.HoFEonm time, or memory, of the process, processes with short memory, for
which their value at time ¢ has little or no statistical dependence on their

value at a later time ¢ + 7, with properly large 7, tend to have a covariance
spectrum with a wide band.

1.5 Gaussian Processes

Often, the value of a process at a certain time is determined by the superposi-
tion of many independent random phoenomena. Since the celebrated Central
Limit Theorem states that the sum of n independent RVs with finite mean and
variance approaches a Gaussian distribution for increasing n, it is intuitively
understood how the observation of a process can be a Gaussian RV.

Strictly speaking, a process is called Gaussian if, for any n-tuple of times
t = [t1,12,...,t,), its observed values form a vector z = [z1, Z3, ..., &) of jointly
Gaussian RVs with joint pdf

1
IRVICOHE

where 7, = Efz;] = E[X(t;)] = nx(t:) are the elements of the mean value
vector 0 and the covariance matriz C has elements

e~ 3lz-mTC ™ (z-n)]

<

)

[5e

l:
|

Cij = Cov[z;, z;] = B[(X(t:) — nx (t:))(X (t;) — nx (t;)] = éx(t:;1;)

Since these elements only depend on the mean value and autocovariance func-
tions of the process, statistics of any order can be computed once nx(¢) and
¢x(t1,t2) are given. Moreover, if the Gaussian process is WSS, it can be
shown, using nx and ¢x(7), that the statistics of any order are invariant to
a shift of the time origin and thus X(¢) is also SSS.

These properties make Gaussian processes a very special kind of processes;
another fundamental property is that Gaussianity is preserved by linear fil-
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tering: writing convolution in a limit form

+oc
y(t) = Jim_ > a(iat)h(t - iat)At

the output process at any time ¢ is shown to be a linear combination of the
Gaussian RVs z(iAt) and thus Gaussian. If X(t) is Gaussian and WSS then
Y (t) is WSS, as stated in the last section, and also gaussian, then both are

SSS.

White Gaussian noise

Noise is often the sum of many independent random effects: for example,
the thermal agitation of electrons in a conductor at absolute temperature
T produces a random voltage signal at the terminals of the conductor; this
stochastic process is referred to as Johnson noise or thermal noise.

Given a complex impedance Z(f), the celebrated Nyquist theorem
states that thermal noise, i.e. the voltage N(t) measured at the terminals
of the impedance, is a stationary Gaussian process N(t) with mean value
nx = 0 and covariance spectrum ®,(f) = 2KTRe{Z(f)}, where Re{-} stands
for the real part and K is the Boltzmann constant.

If Z(f)=R is a pure resistance, then the covariance spectrum and the PSD
are constant and the process N(t) is called white noise in analogy with pure
white light, which contains all frequency components in the same amount. It
is evident that white noise is only an abstraction, otherwise its mean power
Py computed integrating the PSD would be infinite, but for the frequencies
of interest (about up to 10*? Hz) thermal noise can usually be thought of as
white; for higher frequencies the actual spectrum will be slowly decreasing.
Also, it is common to deal with filtered versions of thermal noise: since filtering
alters the PSD, this is referred to as coloured noise.

Inverse-transforming the covariance spectrum of white noise yields for the
autocorrelation ¢y (7) = 2KTRé(7), a Dirac delta with zero duration. Since
we interpreted this duration as the memory of the process, we can state that a
white noise process has the most rapid, istantaneous, random variations since
its value at time t is statistically independent of its value at immediately
preceding or subsequent times.

We will often use the properties of gaussian processes and white noise in
the following chapters, where noise plays a major role in the detection and
estimation problems.
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2 Elements of Detection Theory

The problem of detecting an information bearing signal arises in many sci-
entifical and technological fields: communication theory, radar theory and
experimental study of gravitational waves, just to name a few. The main
difficulty is that the information bearing signal may suffer from many impair-
ments while it transits from the source that generated it to the destination
equipment that is able to detect it: weakening, due to dispersion of its energy,
distortion, due to physical means that supports its transmission, and noise,
which is always present in any measuring equipment, are the main impair-
ments. The solution to the problem is to design a suitable receiver that is
able to detect signals which are weakened, distorted and corrupted by random
noise. The object of detection theory is to devise the design methodology of
such receivers and the assessment of their performance.

There may be different schemes, depending on the application area, in
which a detection problem is at hand: in the GW case, for instance, the main
question is to decide, at a certain time, if a useful GW signal in the midst of
noise has been detected by the measuring equipment or else the measured data
consists of noise alone; we talk of binary hypotheses testing, in this case.
Another scheme is that of digital communications, in which it is costumary
to transmit one among many, say M, different signals which is in a one-to-one
correspondence with a certain symbol to be received at destination; we talk
of multiple hypotheses testing, in this case.

7N
\ Signal / /,/ . m
,/uo:_.nu\ distortion ,T Sxf | REC O |
e ¥ ﬂ
atty \ ®
on/off !
stochastic process v(t)

Figure 6. Binary hypotheses testing scheme.

In Fig. 6 a binary hypotheses testing scheme is depicted: the receiver
must make a decision whether the source is on or off, and thus turn the traffic
light green or red, based on the observation of its input signal v(¢). This
signal is typically the voltage across the terminals of an antenna and, since
the receiver ignores what signal will show up at its input, v(¢) is a stochastic
process, its randomness being influenced by several factors: in particular, the
state of the source (on/off) and the insertion of random noise n(t). The aim
of the receiver is, of course, to make mistakes as seldom as possible: this is

403

often a though task since, particularly when dealing with very weak signals,
a useful signal plus a strong noise can resemble the shape of noise alone.

2.1 The mathematical approach

Theory of Probability represents a useful mathematical tool for modelling
a detection problem: in the general case of multiple hypotheses testing, we
can associate the M hypotheses, each representing the detection of a certain
signal, to M different events H;. Suppose the receiver observes the signal v(t)
in an interval of length T, measuring n data points that are collected in a
vector v = (v1,va,...,s): v is a vector of real samples extracted from v(t),
that lies in the R™ space, R being the set of real numbers. We will discuss
later of how the sampling procedure shall be performed; for the moment, the
problem can be stated as: choose j, and thus the hypothesis M;, based on
the outcome of the random vector ¥ € R®. The key to the solution of this
problem is the knowledge of the joint conditional pdfs p;(v1,v2,...,vs) (We
will denote a pdf with the letter p in this chapter), each subscript j denoting
conditioning on the event H;. The problem can thus be restated as: choose
which of the M different p;(...) is believed to characterize the observed data.
The receiver must then univocally associate an H; to any point of the data
space, thus dividing R™ in M disjoint regions R;: any such decomposition is
called a strategy. Given the strategy, it is determined the rule according
to which the receiver decides for a certain hypothesis, having observed the
measured data.

2.2 Decision criteria: the Bayes’s sirategy

To decide which strategy to employ we must seek a decision criterion: it
is reasonable to choose that strategy maximizing the probability of correct
decision P, or equivalently the one minimizing the probability of error P, =
1— P.. Assume we know the prior probabilities Pr(H;) with which the j-th
hypothesis is verified, since the receiver chooses H; whenever v € R;, we can
write, according to the total probability theorem

M M
P.= Y P(E) P € Ry/H)) = Y. Po(H) [ i)
i=1 j=1 R;
and also the posterior probabilty that H; is true when v is observed can
be expressed through the Bayes’s theorem

P, (H,)p;(v)

Pr(B;/v) = p(v)
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with p(v) = MMSHH P,(H;)p;(v) the unconditional pdf of the data vector. We
can now insert the last equation in the expression of P, obtaining

M
P=Y [ so)P (/0 (o) >0)

Since we wish to maximize P, the best strategy, according to the last ex-
pression, is to choose the hypothesis with the greatest posterior probability,
given the observed data v. This conclusion was first enunciated by reverend
Thomas Bayes in 1763 in his “An essay on the docirine of chances” and is
referred to as the Bayes’s rule.

In the simple case of binary hypotheses, for the detection problem, the
receiver can only choose between the presence of noise only in the observed
data, which is referred to as the null hypothesis and labelled as Hy, and
the presence of a useful signal besides noise, labelled H; and called the alter-
native hypothesis. Following Bayes’s rule, the receiver must evaluate and
compare the posterior probabilities: neglecting the unconditional pdf p(v),
which is irrelevant for the comparison,
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the first above expression must be evaluated, choosing the appropriate H;.
Equivalently, introducing the likelihood ratio A(v), as above, it can be com-
pared with a fixed decision threshold, determined through the prior probabil-
ities.

In binary decisions, two kinds of errors can be made: an error of the first
kind happens when choosing for the alternative hypothesis when no signal
is present: this is called a false alarm and denoted by (— H;|H,). Errors
of the second kind happen whenever choosing the null hypothesis while H;
is at hand: it is called a false dismissal and denoted by (— Ho|H;). In
practical situations, false alarms and false dismissals may have different costs
of operation and even correct decisions, like (— H;|H1), which is called a
detection, may have their costs. Following Bayes’s rule, the average cost of
operation is

o= [ Ol Hola)po)d™ + \m (= Hilo)plo)d
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and, through some calculations, it is seen that it can be minimized again by
the same decision rule introduced before, comparing now the likelihood ratio
against a modified threshold.

vaﬁmzmﬁ.ﬁ > mo\m_vlqﬁ|v m_ \m—v”_

This refinement of the Bayes’s rule is referred to as the Bayes’s strategy.

The core of binary hypotheses testing is, as for the general M-ary case, to
find the hypersurface D that splits the data space R™ in two disjoint regions,
Ro and R;, related with the two hypotheses. The probabilities Q¢ of a false
alarm and Qg of correct detection will then read

& A
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and are referred to as the size and the power of the test, respectively.
Through these, it is easy to calculate the probability of error P. = Pr(Ho)Qo+
Pr(H,)(1 — Q) or the probability of a false dismissal, which is (1-Q4).

2.3 The Neyman-Pearson criterion

In many practical applications, it is difficult, if not impossible, to establish an
a-priori value for the probabilities of Hy and H;: in the detection of gravita-
tional waves it could even be meaningless to state the probability with which a
GW signal is present in the observed data. But, in those situations where H;
happens “rarely” it can be seen, from its last expression, that the probability
of error is dominated by false alarms.

Therefore, an alternative reasonable decision criterion, first established
by Neyman and Pearson in 1933, would be “for a given affordable Qo, seek a
strategy maximizing @Qp”, or, otherwise stated, given the size, maximize
the power of the test. We shall now see that the optimal strategy under
this criterion again calls for the likelihood ratio, requiring the comparison with
a certain threshold A:
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In order to demonstrate it, note that, according to the last expression,
the hypersurface D contains data points for which A(v) = A, while on the R,
and R; sides of D the likelihood ratio is smaller or larger than A, respectively.

Figure 7. An intuitive demonstration for the Neyman-Pearson decision strategy.

Assume that the strategy is changed by modifying D into another hyper-
surface D’ while keeping Qo constant, as sketched in fig.7. Since Qg is the
integral over R; of the conditional pdf po(v), this modification can be accom-
plished in an infinity of ways, but, whichever may be the new D’ (solid line
in fig.7), the power

Qa= \m _ pi(v)d"v = \ A(v)po(v)d™v

R,

is easily seen to have decreased. Intuitively, we can see that by modifying
D we gave away from R; those points, labelled with “-” in the figure, while
gaining the points labelled “+” which are of “less value” if measured by A(v),
as in the above integral.

Since the optimal test is that expressed in (1), how does one set the
threshold A? The first thing to note is that A(v) is itself a random variable,
depending on the random data, with some conditional pdfs P;(A) that can
be calculated, under each H;. The size and the power of the test can be then
rewritten as

§um$€v<57\
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8?3{? Qa= P.(A(v) > A/Hy) = \Jﬁi%
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and A be determined from the first integral once the size is fixed, according
to the Neyman-Pearson criterion. The same criterion ensures that the second
integral yields the maximum possible value. Note that, under this new crite-
rion the threshold is independent of the prior probabilities Pr(H;), which can
be unknown.

2.4 Sufficient statistics

As seen in the previous sections, both under Bayes’s and Neyman-Pearson’s
criteria, the likelihood ratio A(v) embodies all the relevant information, ex-
tracted from the data, for performing an optimal decision. Any function of
the data points with the latter property is called a sufficient statistics for
the detection test: besides A, other sufficient statistics exist, such as, for in-
stance, any monotone increasing function G(A) of the likelihood ratio. This
should of course be compared with a different threshold Gy, to be determined:
in order to set a proper Gy, the conditional pdfs of the new random variable
G must be calculated. Once PEG and PFG and are known, one of the two
following equations can be used

PE(Gp) © g
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to determine Gy, depending on which criterion is adopted. The most common
among these other sufficient statistics is the log-likelihood ratio

G(A) = In Tiwg

Po(2)

of which the usefulness will be evident from the following sections.

2.5 Detection in Gaussian noise

Let us now switch back to the problem of obtaining the data samples v from
the observed signal v(t). The most celebrated problem in detection theory is
to recognize if, observing a noisy signal v(¢) in the time interval 0 < t < T,
there is a useful signal s(t) “immersed” in gaussian noise n(t) or else v(t)
consists of purely noise. Therefore, this is a binary hypothesis test, for which
the alternative hypothesis H; is expressed by the equation v(t) = s(t) + n(t),
while the null hypothesis Ho can be written as v(t) = n(t); it is assumed here
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that the signal s(t) is completely determined while noise is described by its
ensemble averages. It is important to recognize that, under both hypotheses,
v(t) is a gaussian process: then it can be described by its ensemble averages,
computed on the samples of v(t). Instead of using time samples, like v(t,)
assume to use the following original sampling method.

A set of function {fx(¢)} is said to be orthonormal on ¢ € [0,T] if they
obey the following equalities

T T
\ofsis&no \ome&nﬂ

Some examples of such sets are the Fourier harmonics and the Legendre poly-
nomials. Using an orthonormal set, any function () can be represented on
[0,T] by a Fourier-like series using its coefficients v, according to the following
equations

[e ]
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and the last equation is a Parseval-like theorem expressing the energy of v(t)
on the interval [0,T]. The coefficients vy are easily seen to be Gaussian RVs,
since v(t) is Gaussian: their mean value and correlations, under the null hy-
pothesis Hy, can be computed as follows, using the linearity of expectation E|.]
and the definition of autocovariance of the noise process ¢(t, s) = E[n(t)n(s)].

Elv, /Hyl= .ﬂmTSS (Hdt=0

T T T T ,
i =E v EOT b.o r 11 WE[n@n())fy (s)dt ds= .—o ...o S {0085 fy (s)d ds

One of the reasons for using the samples v and not time samples is that if
n(t) is white noise the variance of time samples would be infinite.

When setting up the likelihood ratio for the data samples vy, it is
extremely useful to have uncorrelated samples: this task can be accomplished
by choosing a particular set of orthonormal functions. Suppose we select
those functions which are the eigenfunctions of the following homogeneous
Fredholm integral equation

T
»»?QVH.\o B(t, 8) fr(s)ds
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Here the kernel ¢(t,s) acts as a linear operator that “stretches and rotates”
functions in an Hilbert space of infinite dimension: the eigenfunctions being
those that are stretched but not rotated. It is possible to show that if the ker-
nel is real and symmetrical (or complex but hermitian) the equation has real
eigenvalues and orthogonal eigenfunctions, as demonstrated by the following
equations

T T T
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Once demonstrated orthogonality, orthonormality can be accomodated
by a multiplying factor for each function. These particular functions con-
stitute the Karhunen-Loéve basis: expanding v(¢) with this basis implies
uncorrelated samples v, each with variance Az

T ) =
&;H \:\o i:?@&n Am: w M M

and, since the samples are uncorrelated and Gaussian, they are also indepen-
dent.

It is now simple to calculate the likelihood ratio. Suppose, for the sake
of simplicity, that we base our decision on the first n samples only: since vy
are independent Gaussian variables with variance Ax, under both hypotheses,
zero mean under Hy and mean value

T
m.?w_m.ﬁ_ = .\n.V uﬁv\w Qv&s = 8k

under Hj, where si is the k-th coefficient of s(¢) expanded with Karhunen-

Loéve basis, the joint conditional pdfs of the samples will be
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from which it is easy to form the likelihood ratio A,(v). Letting n — oo,
An(v) becomes a sufficient statistics, the linear and log-likelihood ratios then
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become
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The log-likelihood ratio G is a Gaussian random variable, that can be
practically computed avoiding the calculation of the coefficients v, Sk, Ak.
Resorting to the definition of v

oo
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and the term in square brackets is the expansion, on the Karhunen-Loéve
basis, of a function g(t) that is seen to solve the inhomogeneous Fredholm

equation
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in which the useful signal s(t) appears on the right hand side. Therefore, G
can be computed by integrating the product g(t)v(t) on [0,T]. Its statistics,
conditional mean and variance, are

A
VarlG] = ﬁ _.MaemTSAS_%S%&u ﬁﬁoé&u%

E[G/H, )= .ﬂa@ﬂ:@? =0 ElG/H,|= ﬁ&cmv@ +n(n))dt = d*

where the symbol d? has been introduced: we will further exploit the meaning
of this parameter. Through the Gaussian conditional pdfs of G, its likelihood
ratio, which is referred to as the likelihood functional, can be computed

ﬁQAQV T 1 T
AG) = 17—~ =exp \ q(t)v(t)dt — |\ s(t)q(t)dt
(9= %) , =g,
where the first integral coincides with G and the second with the definition
of d2. The sufficient statistics G is suitable for the detection problem under
both decision criteria: with Bayes detection it must be compared with the

threshold Go

411

while with Neyman-Pearson detection Go must be calculated from

_g? Qo
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Using the latter expressions, it is possible, for a given Qg, to evaluate Go
for any value of d and then compute Qq, deriving the plot of Fig.8, which is
reprinted from [1]. This plot evaluates the performance of the receiver, under
Neyman-Pearson criterion, giving the attainable power Q4 once the size Qo
is chosen: the parameter d depends, by definition, only on the signal s(t) to
be detected and the noise autocovariance ¢(t, u).
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Figure 8. Probability of detection: curves indexed by the probability of false alarm Q.
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Detection in stationary white noise

In the simple case of stationary white noise, assume the covariance spec-
trum is constant and equal to ®(f) = N/2, the autocovariance function is
then ¢(t,u) = (N/2)6(t — u) and the solution to the inhomogeneous Fredholm
equation is simply

T
[ 3t = watwdn = o) = a(t) = =)

provided that the signal s(t) vanishes outside the observation interval [0,T].
In this case, the statistics G can be found through the integral

G= \e s(t)v(t)dt

referred to as the correlation between the useful signal and the observed
process v(t); the factor 2/N can be absorbed into the decision threshold Go.
The likelihood functional is simplified as well, and the term d? represents
the signal energy to power spectral density ratio, briefly referred to as the
signal-to-noise ratio:

2 T 2F
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Note that since d grows with T, performance also grows with the observation
time, which is an intuitive result.

The optimality of the log-likelihood ratio G was first formalized by
Granader in 1950, stating that the statistic G is optimum for the detection
problem if g(t) is square integrable on [0,T]; these results were further ex-
tended in 1967 by Kadota demonstrating that it suffices that d? is finite for
G being optimum. If d is infinite, it is seen that Qo=0 and @p=1: in this
case a singular detection is said to occur.

The matched filter

In the general case of Gaussian noise, the correlation between the observed
v(t) and ¢(t), defining G in accordance with (2), can be practically realized by
constructing a filter with impulse response k(t) = g(T —t), for 0 <t < T', and
zero elsewhere. This filter, first introduced in 1943, is called the matched
filter since its impulse response is the “mirrored and shifted” version of ¢(t).
The output of the matched filter is found by convolution between k(t) and
the observed v(t)

y(t) = \.o v(T)k(t — 7)dT = \Te v(r)q(T —t + 7)dr
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and can be sampled at time ¢t = T' to yield the seeked value of G. Fig. 9 shows
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Figure 9. Optimal receiver scheme for binary detection in Gaussian noise.

the scheme of an optimal detector in this case: it is made up by a matched
filter, followed by a sampler and a binary quantizer with the proper threshold
Go. It could be also demonstrated that the use of a matched filter minimizes
the effect of noise on the random value of G that exits the sampler.
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Figure 10. An example of the matched filter action, in the case of white noise.

In the simple case of white noise g(t) = s(t), and thus the impulse response
of the filter k(t) will be matched to the useful signal s(t). Fig. 10 depicts how
the noisy signal v(t), which is the sum of s(t) (dashed line) and white noise, is
filtered producing an output whose peak value would be on the sampling time
T in the absence of noise (dashed line): random fluctuations, due to noise, may
bring this value below the threshold thus causing a false dismissal. The use of
a matched filter minimizes these fluctuations. The matched filter, previously
introduced in communication theory, was first applied to a detection problem
by Peterson, Birdsall and Fox in 1954. It must be noted that the signal to
be detected has to be completely known in all its parameters, including the
arrival time.

3 Elements of estimation theory

So far, we have been dealing with the problem of recognizing the presence of
a finite number, one or more, of specified signals in the midst of noise; this
problem is referred to as the simple hypotheses testing. Since these signals
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have been assumed completely known, and so is the statistical description of
noise, the conditional pdfs p;(v) of the observed samples are also completely
known. But signals to be detected are rarely univocally specified: more often
it happens that these signals are specified only partially, since they depend
on one or more unknown parameters (their amplitude, time of arrival, carrier
frequency...). Thus the problem becomes to recognize if any among an entire
class of signals has been detected (H;) or only noise is present (Hp), the class
s(t; 6) being specified by a vector 8 = (61,6, ...,0,,) of unknown parameters:
in this case we talk of composite hypotheses testing. Even worse, it may
be necessary, in the hypothesis H; that a useful signal is present, to evaluate
those parameters, based on the observation of v(t): this is the parameter
estimation problem.

To introduce some terminology, the m unknown parameters are called
the estimanda: these are, in general, random variables whose prior joint
pdf 2(6y,6,,...,0,,) may be known or not. Under hypothesis H;, the ob-
served signal is v(t) = 3(¢;8) + n(t) and the joint conditional pdf of data
samples becomes dependent on the unknown parameters: it can be expressed
as p(v;8) = po({ve — sx(6)}), where po({ni}) is the joint pdf of noise sam-
ples alone and si (@) are samples extracted from the useful signal. This way,
the estimanda become parameters of the distribution of the observations: our
problem is then to seek those values of 8; for which p(v;8) best describes the
observed data, in some sense. We must then seek a strategy that associates m
numbers 6;, called the estimates, to the estimanda, based on the data. This
strategy will determine a vector of m functions of the data that performs this
association: such a vector § = (61 (v),62(v), ..., Om(v)) is called the estimator.

We can think of the estimanda and the estimates to lie in a parameters
space O: since the estimation is performed in the presence of noise, the es-
timation procedure repeated in two different experiments will produce two
different values for the estimates, even if the estimanda are the same. Thus,
the estimates will be always in error: estimates and estimanda are then, in
general, represented by two different points in ©. The aim of estimation
theory is the design of receivers that minimize the errors due to noise and,
possibly, predict how large the irreducible errors will be, on the average.

The key to the solution of the estimation problem is the knowledge of
the joint conditional pdf of the data p(v|@), given the estimanda. In order to
derive an estimation strategy, let us define some quantities that give indica-
tions about the goodness of a particular estimator: it is intuitive that a good
estimator 6y, is required to be close to the true value ) (the estimandum), on
the average.
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The two above expressions define the estimator expected value and the mean
deviation from the true value, also called the bias, respectively; if the bias
is equal to zero, the estimator is said to be unbiased. Both expectations are
conditioned on the true values of the estimanda; expected values are then
evaluated with respect to the statistical variations of noise only. Another
fundamental figure of merit for an estimator is the Mean Square Error
(MSE)

Ev=E[(6,(v)- 6,)%(6] = Er=Varl,(v)]+ (@ - 0s)°

that can also be computed through the variance of the estimator and the bias,
as shown above. It is evident that a good estimator should have a low bias
and a low variance but, in practice, this is often a compromise.

Figure 11. Estimator expected value and estimate, in the parameters space O.

Figure 11 shows the shaded region, whose radius is the estimator stan-
dard deviation, around the estimator mean value in which the actual estimator
value will more often fall; the bias is the distance between the two points in
the area. The calculation of bias and MSE requires the knowledge of the
conditional pdf ﬁm)»_@ of every estimate: these are obtainable from the con-
ditional pdf of data p(v|€), since the estimator elements 6, are deterministic
functions of the data.
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Figure 12. Partition of the parameters space: every region is associated with an hypothesis
H;.

3.1 Mazimum a posteriori (MAP) estimators

Suppose to partition the parameters space in M disjoint regions, each called
A, and having a vector 8, in its “center”, as depicted in Fig. 12. If we
introduce M events Hj, each stating that “the vector of estimanda € lies
in region A,”, we can choose one of these events, based on the observation
of the data v, and then associate the data to the i-th central point 8;, so

defining the estimator function: mAmv = 8, . This way, the estimation problem
is reduced to a multiple hypotheses testing problem, whose solution can be
found by applying the strategies devised in the previous chapter. In particular,
following the Bayes’s rule, one should choose the i-th hypothesis for which
the posterior probability Pr(H;,—uv) is largest. In the present case, these
probabilities can be computed through the expression

P,(Hily) = \> Ol)dmo

which in turn requires the knowledge of the conditional pdf of parameters,
given the data. This function is in general not given but it can be computed
through the application of the Bayes’s theorem in its continuous form

_ =(O)p(xl6)

p(8lv) )

since we assumed to know the conditional probability of the data, given the
estimates, appearing in the numerator.

It is evident that an estimator associating the data to the M points 8, is
not the optimal choice but, passing to the limit for M— oo, the regions A
become smaller and smaller thus making Pr(H;—v) x p(6;|v). The optimal
estimator, according to the MAP strategy, implementing the Bayes’s rule, is
then the one selecting the estimates that maximize the conditional pdf of the
estimates, given the data. Stated mathematically, the strategy is to choose
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that satisfies
p(B(x)lv) > p(8lv) VocoO

To gain a deeper insight on the MAP strategy, let us denote with ¢’
one of the many possible estimates (not necessarily the selected one): the
conditional pdf of the estimate ¢(8’|€), given the true estimanda, for ' to be
a good estimate should be sharply peaked around the true value 8'=6. While

6, 9,

Figure 13. Distribution of the estimate 8’, given two possible values for the estimandum.

in the estimation problem the estimanda are random by definition, also the
selected estimates are random, because of noise, prior to the observation of
data. In the pictorial representation of Fig. 13, where the estimandum is
assumed a scalar 6 for simplicity, even when the true estimandum is given, for
example 8 = 6, we do not know which 8’ will be the actual estimate before
we observe the noisy data: 6’ a priori spans an entire interval, labelled «
in the figure. The more g(§'|6) is peaked around 6 = 6,, the more accurate
the estimate will be, on the average. Since we do not know what value the
actual estimandum will have, it can be introduced a measure of the average
peakedness for the pdf ¢(8'|¢), according to the following expression

Q= \@ 2(0)q(818)d™6

that averages g(.) with respect to the prior distribution of the estimanda. The
meaning of ¢(8’|6) is the probability that the chosen estimate is 8’ : it can
be computed by summing the probability that data takes values on which the
estimator ma v) is equal to ' , according to the following equation

a0'18) = [ 86~ Bo)p(ulo)ans
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Putting the latter expression into the previous integral gives a new expression
for Q, that can be further simplified using Bayes’s theorem

a= [0 [ b0 - Bw)plule)vme = Q= [ )y

Since the MAP strategy chooses the estimator maximing @Am@_mv, it also

maximizes the last integral (p(v) > 0) and thus Q.

3.2 Mazimum Likelihood (ML) estimates

Through Bayes’s theorem it can also be said that MAP strategy seeks the
maximization of the product z(8)p(v|8). Unfortunately, the first factor, z(8),
is often unknown or even with little meaning (for instance when the param-
eters are deterministic but unknown), thus making the applicability of MAP
strategy impossible, since it requires the knowledge of the prior distribution
of the parameters. In all those situations in which there is great uncertainty
on the parameters, the prior distribution of these can be thought to be much
broader than the conditional distribution of data samples p(v|¢), which is only
due to noise. Referring to Fig. 14, where scalars are employed for simplicity,
suppose that the scalar datum v is observed and that the conditional distri-
bution of data p(v|#) has a maximum on vo for # = 6;. Since the prior pdf of
the parameter, z(6), is increasing for # > 6;, we can expect that the optimal
MAP estimate lies somewhere between 6; and 6, the latter point identifying
the maximum z(6;) for the distribution of the parameter. If, as assumed, the
function z(6) is relatively flat, we can reasonably think that the MAP esti-
mate, i.e. the one maximizing z(€)p(v|@), lies close to #;, which maximizes
p(v|6) only.

The choice of an estimate for which the conditional distribution of data
p(v|8) is maximum on the observed data v is called the Maximum Likeli-

hood (ML) strategy: the estimator 6(v) is chosen as to satisfy the following
property

p(v/8(v)) > p(vf) VE€ O

Thinking again of the product z(8)p(v|6) , it is recognized that when
the pdf of z(§) parameters is very peaked, almost all the information on the
estimanda is contained in it and, knowing z(§), one can reliably guess an
estimate without observing the data. If, on the other hand, the function
z(8) is really broad, it can be neglected in the comparison between different
estimates, thus reducing the MAP strategy to the ML strategy. When 2(6)
is not known, there is no choice: it must be neglected and the ML strategy is
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to be applied. A useful property of ML estimates is that, if in one problem
it is easier to estimate not the parameter but a monotone function of it (e.g.

A ~

f(8) = 63) we can estimate 63 and then set § = m\mﬂ, using the inverse
function of f(.). This useful procedure cannot be applied with MAP estimates
since a different weight is assigned, through z(8), to corresponding ranges of
6 and f(6), in the transformation performed by f(.).
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Figure 14. Correspondence between MAP estimate and ML estimate, for scalar parameter
and data.

3.3 The likelihood functional and the Greater Likelihood Ratio Test

The strategies just described both require the comparison of the conditional
pdfs of data p(v|6), for different values of 6, for deriving an estimator. To
overcome the difficulty of having to deal with an infinity of samples, when
the dimension n of the vector v grows, the latter pdf can be divided by the
Jjoint pdf po(v) of pure noise samples, which does not alter the results of
comparisons. Provided that 8 appears only in the expression of the useful
signal s(¢;8), we can then resort to the function

. p(v]f)
Av(?)|6] = lim ———
[v(2)6] = lim 20(0)
which is referred to as the likelihood functional. Thus, the ML strategy
requires finding the estimator 8[v(t)] for which A[v(2)|6] is the largest. In the
case of white Gaussian noise, it is easy to see that:
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where the last integral coincides with the energy d? of the signal s with pa-
rameters 6.

How can we practically search for an estimate maximizing the likelihood
functional: in the case of white Gaussian noise, a solution is to build a bank
of matched filters, with impulse responses k(; m.ﬂ.v. each filter being matched
to a signal .Ar.@.v identified by a different set of parameters, as depicted in
Fig. 15. As outlined in the figure, this approach corresponds to a sampling of

X
A
D,
I
53

N

T iAo

Figure 15. Receiver with a bank of matched filters.

the parameters space ©: at the output of the j-th filter we have the result of
the first integral appearing in (3), for § = mu.“ through the subtraction of the
corresponding energy &w, a monotonic function of the likelihood functional
can be maximized for choosing the estimate. Ideally, a continuum of filters
would be needed, which is impossible, and thus the chosen estimate is always
an approximation of the true estimanda. Some countermeasures to enhance
the reliability of the estimate would be to provide parameter sets 6, that are
densely spaced over the region of © where the true estimanda are expected to
lie. Since it is not implicit that the observed signal v(t) contains some useful
signal in it (it can be only noise, in the hypothesis Hy) it is possible, after
the estimation procedure, to switch back to the detection problem, deciding
for a Hg or H; based on the comparison of the selected likelihood functional
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with a threshold that can be chosen according to the guidelines of the previ-
ous chapter. This approach is called the Greater Likelihood Ratio Test
(GLRT) and is formalized by the following decision rule

,
Al >
2| A,
<
H,

Ew.x >?Qv_®_ = >—<Qv

Estimation of arrival ttme

In general, the designer of the receiver should avoid building a bank of
matched filters: however, this is possible only in some simple cases. To help
understanding, suppose the problem is to determine if a certain signal s(¢) of
finite duration T’ is detected in the presence of white Gaussian noise. The
signal can arrive at the receiver with a random time displacement 6, to be
estimated, of which we don’t know the prior distribution. The observed signal
is thus v(t) = s(t — 6p) + n(t), where 6 is the actual arrival time, as shown
in Fig. 16. We assume that the observation extends in [0,T].

s !
/]

= ¢
-

Figure 16. Signal with random arrival time corrupted by white Gaussian noise.

According to the ML estimation strategy, the receiver must maximize the
likelihood functional or else its logarithm, the log-likelihood functional.

el ]
max >TS_%_ o Ewk__ ._.DE, t)s(t- %KJ

This would require building a bank of filters, each with an impulse response
k(t;8,) = s(T — (t — §;)). Practically, only one filter with k(t) = s(—1) is
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needed: the output of the filter at time 6

T =)
G(9) = .\ v(t)s(t — 0)dt ~ \ v(r)s(—(0 — 7))dr
(o] —o0
coincides with the log-likelihood functional and thus the receiver will choose,
as the estimate, the time ¢,, when the output reaches its maximum.

3.4 Performance of ML estimators

In this section we wish to derive an expression for the bias and the variance
of a ML estimator, these parameters representing the figures for evaluating
the performance of an estimator. For the sake of simplicity, we will develop a
general approach for the case of a single parameter 8, with true value 8, using
the natural logarithm of the likelihood functional, called log-likelihood
ratio g(v|6), where v briefly represents the observed signal. Since po(v),
appearing in the definition of A[v|6], does not depend on 8, it will be omitted
for the moment without loss of generality: the definition of the log-likelihood
ratio is thus g(v|#) = Inp(v|@). In parallel, the approach will be applied to
the practical case of estimation of the arrival time, introduced in the last
subsection, using the complete definition for g(v|@), that reads

?_s

Nwoe

o(0]8) = =2 \ o(t)s(t — 8)dt — |m \ st — O)2dt  (4)
where the observed noisy signal is v(t) = s(t — 6p) + n(t), in this case.

Since, in general the selected estimator 6 is the one maximizing g, the
derivative of g with respect to § must have a zero for § = 6 such derivative is
denoted by g and is given by

2 9g(ve) _ p,(vlo)
o6 p(vi®)

8, (V)=

The value of g; on the estimator value can be expressed through a Taylor
series expansion in the neighbourhood of the true estimandum 6y: assuming
the estimator is sufficiently close to the estimandum, the terms above the
first can be neglected

A~

96(v18) = g5(v|60) + (6 — 60)gly (v]60) + ... =0 (5)
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In the expression (4), for the arrival time, the second integral is constant
with 6, being the energy of s(.), when the observation time T is sufficiently
large; the first and second derivatives then read

2 (T 2

T
6 t)s'(t — 0)dt 6 t)s"(t — 6)dt
0l0) =~ [ o)t -00t gi(wle) = 5 [ w(e)e"t~0)
Based on (5) we can then approximate the deviation of the estimator
from the estimandum: in the general case and for the arrival time case its
expressions is

T
D P S 7 10 Gl LN
95 (v60) 2 [T o(t)s" (t — bo)dt
respectively. The expected value of the numerator of the above formulas can
be shown to be zero. For the general case, the expectation with respect to
noise (the only stochastic entity appearing in the expression), denoted by

E.[],is

Balasoloo) = [ aitulbowtuibols = 22 | [ ptuloyrs] =0 (0

which follows from pj(v|6) = p(v|0)gp(v|) (see the definition of g;) and the
normalization property of a pdf. The same result is of course obtained for the
specialized case of the arrival time, where the last equality in the following
equation is again justified when T is long enough to contain the whole duration

of s(.).

T
I \o [s(t — 8o) + n(&)]s'(t — 60)dt| =

—2 rT -1

=%/ s(t — 6o)s'(t — Bo)dt = ﬂ?wﬁ —60)]F =0

An important formula can be derived for the expected value of the denomina-
tors in (6), by carrying on the calculations of the expectation in (7): through

some algebra, we have, in the general case

s}

2 [ avonenas] -

0=0¢
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ﬁ\a g5 (v|0)p(v|6)d™ v + .\,= &ES\ES&;L - (9)

ﬁ \ 95 (v[O)p(v]6)d"v + \w ..wm?_éﬁe_mv%emns -0

= Eng6(v]60)] = —En[[g5(v]60)]”] o

Em;. the last equation relating the first and second derivatives of the
log-likelihood ratio. Applying the last result to the arrival time problem, we
get, for the expectation of the denominator in (6):

2 [T m.
E, m.\ﬂw TQIm0v+§Q:u:A“|mov&“ = .NNQ.\% s(t — Bo)s" ( — 6o)dt =

- g, Amﬂv Ne \o “[o(t = 80) + ()15 (¢ — Bo)fs(u — o) + (u)]o'(u — 6o)dud|

—9 (T
= = [s'(t —60))%dt  (10)
0
where the autocovariance of white noise has been used and the result of the
expected value in (8) has been used to simplify some terms. Rewriting the
expression of the estimation error for the arrival time in a different form

. — 2 [V n(t)s'(t — 60)dt

~2 [F1s'(t — 60)2dt + 2 [T n(t)s"(t — 6o)dt

it could be demonstrated that, for high signal to-noise ratios (SNR), the sec-
ond term of the denominator is negligible, compared to the first; the first
term representing the denominator expected value (see (10)), and the sec-
ond representing its statistical fluctuations. The latter is a general result: in
the expression of the estimator error, for the general estimation problem, the
numerator always contains noise terms, while the denominator consists of a
nonzero expected value plus noise terms that can be neglected, for high SNR.
With this result, that is not evident from (6), we can rewrite the general ex-
pression for the estimator error in (6), considering, in the denominator, only
its expected value:

) 2 (v|0
66~ ||.§|A=F& - (11)
E[gg (v]60)]
now, computing the bias, only the numerator expectation must be evaluated:
since the latter has been shown to be zero, the estimator is unbaiased, under
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our approximations. A more important result is obtained computing the
estimator variance: using the expression (11), the result in (9) and some
simplifications:

95(v160) % 1

Enlg;(v100)]] ~ Enllgs(v]60)]?]

The last expression, known as Fisher’s formula, then relates the mean
square error of an estimator to the variance of the first derivative of the
log-likelihood ratio with respect to noise, this variance being computed on
the true value of the estimandum.

Fisher’s formula can be applied to the arrival time problem: having al-
ready computed g}(v|6) and using (10) for its mean square value, we can write
concisely

Vara[f(v)] = Var, T

. ; = Tl Fde [ea)iscf d
vafpw]e N at2 g LrOFe s bury
Ep o [Cstorar |ISUY A

where T has been assumed sufficiently long, as to extend the integrals on the
whole time axis, E is the energy of s(t), d? is the signal-to-noise ratio, and the
factor 82 can be computed using well known properties of Fourier transforms.
This latter factor is referred to as the mean square bandwidth of the signal
s(t): this name is justified by the last expression which gives an indication on
the dispersion of the signal spectrum S(f) on the frequency axis.

As stated at the beginning of this section, we have used the conditional
pdf of data p(v|@) for our derivations; in general, the previously defined
likelihood functional A[v(t)|d] is appropriate, and all the results hold with
g[v(t)|6] = InA[v(t)|6] being the log-likelihood functional, computed on the
observed signal.

The same approach followed here can be applied to the general case of
multiple parameters estimation: we will omit the demonstrations but it can
be shown that, for large signal-to-noise ratios, the ML estimates are unbiased
and their covariance matrix can be computed, again, using the log-likelihood
functional, according to
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Covld, .6, )-E[6, - 8,,%6, - 6,)]-(r"), (12)

where the elements of the matrix I' to be inverted are given by

a ' ' |
I,=E,[g, (v8,), (v6,)]

The matrix T' is called the Fisher information matrix; we will further exploit
its meaning for the case of white Gaussian noise, in the following section.

3.5 ML estimation in Gaussian noise: the ambiguity function

Recall that the likelihood functional, in the case of Gaussian noise, has the
following expression

T
A1) = exp | [ o(tatt0)ie 1 [ (s o)tz

where q(t;6) is the function solving the Fredholm inhomogeneous equation

\ﬁ.u B(t; u)g(u; O)du = s(t;0)

Deriving the natural logarithm of A with respect to the i-th parameter, gives

T
, dq(t; 8
s, [v(2)|6] = \. n(t) QA v& + constant terms

where the constant terms are those not ngoo» to stochastic variations. Thus,
the covariance of the latter derivatives only depends on the noise process
n(t), and the elements of the Fisher information matrix can be computed by
applying the definition of noise autocovariance function and the definition of

q(.):

In the simple case of white noise, it has been seen that the function q(.)
is proportional to the signal to be detected: for any value of the parameters
set, q(t;6) = (2/N)s(t;8) The Fisher information matrix elements can then
be written as
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mﬁ: 8,)2q(t.8, v.b.i

A _ . 1
I, =Covlg, 9,8, ()]~ E ; {[ ntm(aw w
nﬂ%@mt@@movm

0

26,

1

where the following function of the parameters, called the ambiguity funec-
tion,

H(8,,8;) = .Wﬂ.\”. s(t — 0;)s(t — 6,)dt

has been introduced. The ambiguity function takes, besides the multiplying
factor (2/N), the form of a correlation integral, over the interval [0,T], between
the useful signal s(t), considered for two different values of the parameters set.
Resorting to the interpretation of this integral, introduced in signal analysis,
as a measure of the similitude between different signals, the ambiguity function
gives us an indication on how much the signals s(¢;6;) and s(t; 62) are similar
on [0,T].

=
>

Figure 17. An example of the ambiguity function for a scalar parameter 6.

This interpretation of H(8,, 8,) has some important implications: refer-
ring to fig. 17, that represents a possible ambiguity function in the case of a
scalar parameter 6, for the sake of imzw_wnmaour and considering the function
in the neighbourhood of 8, = 8, = 8, the more the function is flat around this
point the less reliable the ML estimator will be. To demonstrate this result
mathematically, consider that a flat function implies small partial derivatives,
thus, according to (13), the Fisher information matrix elements are small; the
inverse of this matrix has then large diagonal elements and, since, referring to
(12), these represent the variance of the estimator elements, large variances
result in a less reliable estimator, that is more subject to the fluctuations of
its value induced by noise.

This important result could also be justified intuitively, again referring
to the meaning of the correlation integral defining H (8, 8,); if this function



is relatively flat around the estimanda value 6, then significant deviationg
of the parameters from the true estimanda value do not change the usefy]
signal shape significantly, since the value of the correlation integral remaing
nearly the same. The receiver has thus difficulty in estimating the true g
because the useful received signal s(t;6,) and another signal s(t; 8,), imm
8, # b, but close to it, are relatively similar, thus mistakeable, having a large
correlation. If, on the other hand, the ambiguity function is sharply peakeq
around ¢, = 6, = 6,, the ML estimates are reliable, but, referring to fig. 15,
a bank of many matched filters is needed. In other words, since the signal
8(t; 8) is very sensitive to small variations of the parameters, a dense sampling
of the parameters space (implemented by the matched filter bank) is required
in order to have at least one filter whose impulse response is nearly matched
to the true useful signal s(¢;8,) that is to be detected.
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