Netherlands Phonetic Archives

The Netherlands Phonetic Archives (NPA) are modestly priced series of monographs or edited volumes of papers, reporting recent advances in the field of phonetics and experimental phonology. The archives address an audience of phoneticians, phonologists and psycholinguists.

Editors:
Marcel P.R. Van den Broecke
University of Utrecht
Vincent J. Van Heuven
University of Leiden

M.P.R. Van den Broecke and A. Cohen (eds.)
Proceedings of the Tenth International Congress of Phonetic Sciences

Other books in this series:

1 Nico Willems
 English Intonation from a Dutch Point of View

IIA A. Cohen and M.P.R. Van den Broecke (eds.)
 Abstracts of the Tenth International Congress of Phonetic Sciences
SOME RESULTS ON MIXED-SOURCE EXCITATIONS IN LPC SYNTHESIZERS

N.G. Di Benedetto, P. Di Rosa; P. Mandarini

Institute of Electrical Communications, University of Rome, Italy

In this paper, two types of mixed excitation for an LPC synthesizer, are compared. A mixed excitation is obtained by opportunely combining, the output \(u_p(t) \) of a generator of periodic impulses (the period \(p \) is equal to the pitch) with the output \(u_n(t) \) of a pseudo-random generator.

For each segment of a speech signal, indicating by \(b^2 \) the fraction of energy due to the pseudo-random excitation and by \((1-b^2) \) the analogous fraction due to the periodic excitation, the two following questions arise:

1- How to estimate \(p \) and \(b^2 \)?

2- How to combine the two excitations, according to a parameter \(a^2-a^2(b^2) \), where \(a^2 \) is a fraction of energy analogous to \(b^2 \), but which is referred to the excitation?

As far as the first problem is concerned, a method for the estimation of \(p \) and \(b^2 \) is proposed. This method makes use of the following function, called "function of similarity":

\[
S(t) = \frac{\sum_{k=1}^{K} s(k) \cdot s(k+1)}{\sqrt{\sum_{k=1}^{K} s^2(k)} \cdot \sqrt{\sum_{k=1}^{K} s^2(k+1)}}
\]

This method is then compared, with a second method, which makes use, for the estimation of \(b^2 \), of the a priori probabilities of voiced or unvoiced sources, which are computed by means of a bayesian procedure.

With reference to the second problem, and indicating by \(h_B(t;f) \) and \(h_A(t;f) \) the impulse responses of a low-pass filter and a high-pass filter respectively, with a cut-off frequency \(f \), two alternatives are compared. In the first case, the mixed-source excitation is the simple linear combination:

\[
u(t) = \sqrt{2}[(1-a^2)u_p(t) \cdot h_B(t,f)+a^2u_n(t) \cdot h_A(t,f)]
\]

\(f = 2000 \) Hz

In the second case, the combination is obtained by adding the output of the voiced and unvoiced sources, opportunely filtered by means of the preceding filters, with a cut-off frequency \(f_T = a^2f_N \) (\(f_N \) is the Nyquist frequency). One can then write:

\[
u(t) = u_p(t) \cdot h_B(t;f_T)+u_n(t) \cdot h_A(t;f_T)
\]

\(f_T = a^2f_N \)