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abstract

The capacity region of the Multiple Access Channel (MAC) can be
enlarged by using feedback. In this paper, an extension of the
deterministic feedback code proposed by Ozarow for the two-user
Gaussian Multiple Access Channel (MAC) [7] is presented; the
Ozarow’s code is extended to the case of U-users (U >2) in the
specific case in which all users use equal power. Results on system
performance in terms of Symbol Error Rate obtained from computer
simulation of the proposed algorithm are reported. Moreover,
computer simulation of the new code also allows verification and
confirmation of theoretical bounds.

1. Introduction

In the single-user Gaussian channel with non-white noise, the use of
feedback increases capacity. A factor of two bound on the increase of
capacity due to the presence of feedback has been proved [1.2].
Unlike the simple discrete memoryless channel, the use of feedback
in the Multiple Access Channel (MAC) increases capacity even in
the case of a memoryless channel [3,4,5,6]. In [7], Ozarow found the
capacity region for the two users Gaussian MAC with feedback and
demonstrated a feedback coding scheme which allows reliable
communication at all points in the capacity region.

In the present paper, an extension of the Ozarow’s code to the case of
several users characterized by equal power is proposed. The paper is
organized as follows. Section 2 summarizes the Ozarow’s code by
briefly reporting the algorithm, the theoretical bounds, and the results
of computer simulations of the algorithm in terms of system
performance (typically Symbol Error Rate, SER). In section 3, the
proposed extension of the above code to several users is described.
Results of computer simulation of the proposed algorithm are
reported in terms of system performance and intrinsic limitation of
the method. Finally, in section 4 our conclusions are presented.

2. Description of Ozarow’s code.

Ozarow's code [7] refers to a situation in which two users transmit
messages to a central node through an ideal channel. The channel
output is corrupted by an additive Gaussian noise z, which, sampled
at time k, forms the sequence Zj of identically distributed zero-mean
Gaussian noise variables, with variance o2 . Each transmitter has a
limited power P (index i indicates the i-th transmitter) for
transmitting a block of n transmission words. Ozarow’s code is

designed for channels with feedback and leads to an achievable
capacity region, C'™, given by:
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where p is the correlation coefficient of the two transmitted variables.
The above region includes the capacity region of the Gaussian MAC
without feedback, which is:
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Before transmission, the M; transmission words m; are mapped into
values.9’_=mi/(,\li-I)—l/2 and s is sent. Thus, 9 is uniformly
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distributed over M; equally spaced values in [-1/2,1/2]. For high values of
M, 8;has variance //12. At step k, the central node computes an

estimate 9‘" of 3, with an error iy :.9’,/" - .’JI. of variance a -

summary of Ozarow's algorithm

*step 1: at instant k=1, transmitter 1, Ty, sends ‘\Il’\[l””'l 9, and

transmitter 2, T,, is silent. The central node receives: Y=X, 7 and
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*step 2: as in step 1 but referred to .
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Fig. 1. Simulation results with diflerent (nR) codes, and SNR=10 dB (userl) and
SNR=20 dB (user2). Al and B1: userl Ri=1.6 (A1) and user2 Ry=26 (B1), A2 and
B2: userl Ri=1 (A2) and user2 R=2.5 (132),
A3 and B3: userl R=0.8 (A3) and user2 Ry=2 (B3).
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n. Consequently, the capacity is:
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Figure 2. Capacity regions with and without feedback

The equivalent base-band system was simulated by generating for each
transmitter a symbol w; (i=1,2). The symbol error rate (SER) was
computed over transmitted 500000 symbols. Figure 1 shows the results of
the estimation of the error probability for different code lengths and
different rates, with SNR,=10 dB (user1) and SNR»=20 dB (user2).
Observe that curves Al and BI (corresponding to Ry and R, greater than
1.1 and 2.6, respectively) do not decrease when n increases as these values
are beyond the limits of (1) (R, < 1.1008 and R, < 2.6047). The
capacity region is

A REB REB)o<rIB<s 10080 <k B< 2604
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. Under the same SNR, the
o<k B, RB<36681

capacity region for the Gaussian MAC without feedback is:

__{(R,,R_jo SR <1.7297.0 <Ry<3.3291

0<R, +R,<3.3972

Fig.2 shows the capacity regions with and without feedback.
The TDM transmission of 500000 symbols with the two users having
R,=1 and R,=2 was simulated for different code lengths n and SNR. The
results are reported in Fig. 3 which confirms that when n increases (for
equal SNR) SER improves. Curves U1 and U2 correspond to a channel
without feedback and an uncoded transmission. At SER=10" and for
user] (curves A), with n=8, compared to n=6, the code gains about 0.2
dB. With n=6, compared to n=4, the code gains about 1 dB. At SER=10"
and user2 (curves B) with n=8, vs n=6 (n=6, vs. n=4), the code gains
about 1 dB (2 dB). The improvement with n is greater than for userl
because user2 has a higher power and thus higher SNR (10 times
greater). The gain for the first user (curves Ul and A), ranges from about 4
dB (at SER=10") to a very high value (at SER=10"). The coding gain
for the second user (curves U2 and B) is very high for all SER values.
the case of two users with equal power.
With the two users having equal powers (set to one in the simulation), one
has R;=R,=R.
Figure 4 shows the SER for different code lengths and different rates, with
SNR=10 dB. We observe that rates greater than 1.3 (curve A) are beyond
the limit of (1) which gives R < 1.2848.
In this case, the capacity region is
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Fig. 3. Simulation results with different SNR, different code lengths n, and Ri=1 (first
user-curves A), R7=2 (sccond user<curves B). Ul and U2: uncoded TDM transmission
without feedback, A1 and B1: n=4, A2 and B2: n=6, A3 and B3: n=8

* _ ¢——— |without feedback

~

D J 1 1
05 1

R1

@ 2
ui 10 ]
"\.
107 Y 4
A\
‘v
‘."
10" " i N N 3
5 10 15 20 25 30

n

Fig. 4. Simulation results with different (WR) codes and SNR=10 dB3. A: R=14, B:
R=12,C:R=1
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The capacity region with and without feedback is shown in Fig. 5.
The TDM of 500000 symbols at R=1 was simulated for different
code lengths and SNR (Fig. 6). Curve A shows the results for the
channel without feedback and uncoded transmission. Consider
SER=10". With n=8, compared to n=6, the code gains about 1 dB.
With n=12, compared to n=10, the code gains about 0.2 dB. With
n=10, compared to n=8, the code gains about 0.2 dB. The coding
gain is (as in the case of users with different powers) very high for all
SER values.

3. Extension of the Ozarow’s code to the case of
several users with equal power.

We propose to extend Owarow’s code to U users (U > 2 ) with equal
power P. Under this hypothesis, the correlation coefficient between
signals X sent by T; at instant k and Xj, sent by T; at the same time
(i=j)is,foralliandj, Py At the beginning of a block of length n,

T; selects one m; among M; symbols; my; is coded as described in

Figure 5. Capacity region achicvable with and without feedback
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*from step k=U+1 to step k=n: thanks to feedback, each transmitter
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Figure 6. Simulation results with diflerent SNR. code Tengths n and R=1.A: uncoded TDM
without feedback,E: 1=6,D: =8 C: n=10.B: n=12
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possible at all rates under bound (2). In presence of feedback, the
capacity region is:
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Simulation of the proposed code with two users

The TDM of 500000 symbols at R=1 was simulated for different code
length n and SNR (Fig. 7). Performance is reported in Fig.6 showing that
the algorithm N users-equal power includes Ozarow’s code with two
users-equal power.

Simulation of the proposed code with three users

The algorithm was implemented with three users with power one (thus
R=R,=R;=R). Figure 8 shows SER for different code lengths and rates
with SNR=10 dB. Rates greater than 0.7 are beyond bound QR <
0.7104). The capacity region is:
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Fig. 7. Simulation results with different SNR, different code lengths n, and R=1.A: n=12.13:
n=10,C: r=8,D: =6
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Fig. 8 Simulation results with different (n,R) codes and SNR=10 dB.A: R=0.8,13: R=0.7,C:
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Fig. 9. Simulation with different SNR, different code lengths n and R=0.6. A: uncoded
TDM transmiission without feedback, B: n=20,C: n=15, D: n=10

The TDM of 500000 symbols at R=0.6 was simulated for different
code lengths n and SNR (Fig.9). Curve A shows the results for a
channel without feedback and uncoded transmission. At SER=107,
with n=15 vs. n=10, the code gains 0.5 dB. For n=20 vs. n=15 there
is a further gain of 1.5 dB. The gain, for 6 < » <12 and SER=107, is
between 2.5 and 4.5 dB.
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Fig. 10. Absolute value of the correlation coefficient as a funcion of the number
of users.

the case of U users i
Figure 10 shows the absolute value of the correlation coefficient as a
function of the number of users U with P=1 and SNR=10 dB. Note
that, when U increases, the correlation between users decreases and
tends to zero, making ineffective the use of feedback.

Define R the bound given by (2), that is, the maximum achievable
rate, T the maximum achievable sum of rates and C, the channel
capacity. Table 1 contains the values computed for different users in
the case of P=1 and SNR=10 dB.

Note that, when U increases, the maximum achievable sum
of rates decreases, whereas C increases.

4. Conclusions

In this paper, an extension of the Ozarow’s code [7], originally
developped for the MAC channel with feedback in the case of two
users, to the case of several equal-power-users was presented.
Results of computer simulation show that, in the analyzed case of
equal-power-users, the use of feedback with the proposed code leads
to an achievable rate which is higher than with no feedback, as long
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as the number of users is small. More specifically, the algorithm is still

successful for three users but it is not so for a larger number of users. This
result can be interpreted on the basis of a decrease of the correlation
between users as the number of users increases. The above consideration
leads to the conclusion that the simplicity of the code is strictly related to
its inadequacy when the number of users is significant. Future
investigation is still needed to understand the structure of a code which
would allow to approach the capacity bound in a Multiple Access
Channel with several users.

U R T C

2 1.2842 2.5684 2.5693
3 0.7104 2.1312 293336
4 04744 1.8976 3.1528
o 0.356 1.78 33154
6 0.2851 1.7106 3.4506
7 0.2378 1.6646 3.5627
8 0.2041 1.6328 3.6595

9 0.1787 1.6083 3.7448
10 0.1590 1.59 3.8211

Table 1- U: number of users; R: bound given by (2); T:
maximum achievable sum of rates; C: channel capacity.

Values computed for different users in the case of P=1 and
SNR=10 dB.
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