

UWB Network Organization

Luca De Nardis, Pierre Baldi, Maria-Gabriella Di Benedetto

UWB is ...

- UltraWideBand
- Impulse radio
- Carrier-free
- Baseband
- Time domain
- Nonsinusoidal
- ...

- ultra short duration pulses ——— ultra wideband signals
- very low power spectral density
- high fractional bandwidth

$$\eta = 2 \frac{f_H - f_L}{f_H + f_L} > 25\%$$

- excellent immunity to interference from other radio systems
- coexistence with other systems
- PPM / PAM modulation
- multiple access spread spectrum

UWB transmitted signal

• When the number of users is U, the transmitted signal is:

$$s(t) = \sum_{k=1}^{U} \sum_{i=-\infty}^{+\infty} \sum_{j=0}^{N_s-1} g(t - iT_b - jT_f - c_j^{(k)}T_c - b_i^{(k)}\delta)$$

UWB and wireless networking

- What UWB offers to wireless networking:
 - Precise ranging (localization with distributed processing)
 - High robustness for indoor applications
 - Low power requirements
- What UWB requires:
 - Fine power tuning in order to meet power limits
 - Efficient synchronization algorithms to reduce link set-up time and synchronization overhead

Optimal solution for UWB networks: power-efficient, location-based routing strategy

Reference model

MODEL of the Universe

Coverage area: all nodes are within reach of each other

Connection between a source terminal and a destination terminal through a direct path i.e. one hop link, and a multi-hop link made of 3 hops

Reference model

LA SAPIENZA

 Most often, cost functions correspond to number of hops: Cost of single link: ∞ (no visibility); 1 (visibility).

If visibility is granted, there is no multi-hop.

• In our model we introduce a power-related cost function for each link:

• We set a value for the maximum total cost (sum of all CF of active links) in the Network, called maximum NCF (Network Cost Function)

Traditional approaches:

• Absolute minimization of unitary cost function:

- Metrics = Number of hops
- Absolute minimization of power-related cost function:

Metrics = Cost

New possibilities:

• Constrained minimization of number of hops :

Metrics = f (Number of hops, Cost)

• Constrained minimization of Network Cost Function:

Metrics = f (Cost, Number of hops)

- Resulting network topology strictly depends on the adopted path selection strategy
- We expect network topology to resemble one of the three following models:
 - Regular network: each node is connected mainly with its shortdistance neighbours
 - Random network: each node is connected with nodes positioned all over the network, at any distance
 - Small world network: intermediate between the two previous models combines their properties

Small-World Networks

Properties

- Natural organization of a SW network:
 - topology with high clustering coefficient = high cliquishness
 - short average distance between two nodes = short path length
 i.e.:
 - many short-range connections
 - a few long-range connections ("shortcuts").

Short path length

each node is efficiently connected to all possible destinations in the network

High cliquishness

Robustness to local link failure, thanks to high number of alternative local links

Path Length properties

- Path Length is
 - > a property of the **graph** formed by the terminals and their physical links
 - strictly bound to the maximum distance between two nodes (graph diameter)

A network with a small diameter has normally a low path length and viceversa

- Path Length is NOT:
 - dependent upon the average number of hops

A strategy minimizing the number of hops may lead to a weakly connected graph, characterized by high Path Length

Algorithms for path selection strategies

SingleHop algorithm

- Set-up a connection only if a direct link is possible, i.e. if adding the cost of the direct link does not violate the maximum NCF
- MultiHop algorithm
 - Selects the path at lower cost considering **all** possible paths in the network
- Constrained-MultiHop algorithm
 - Selects the path at lower cost in a **subset** of all possible paths in the network
- Small-World algorithm
 - Set-up a direct link if possible, otherwise use a multi-hop path

Simulation Settings

- 25 Nodes on a Ring Lattice
- $C_0=0.7, C_1=1, \alpha=2$

Single Hop and Small World algorithms:

• B=100

MultiHop and C-MultiHop algorithms:

• High Bandwidth plots: B increased of one order of magnitude in order to avoid saturation

king

Ne

LA SAPIENZA

Maximum NCF

Path Length (C₀=0.7)

Cliquishness (C₀=0.7) 0,6 0,5 0,4 Cliquishness Single hop Small World Multihop 0,3 Multihop (HB) C-Multihop C-Multihop (HB) 0,2 0,1 0 20 5020 10020 15020 20020 25020 30020 35020

Maximum NCF

- Expand the multi-hop self-organizing concepts to large-scale systems, by introducing the concept of logical visibility
- Introduce mobility in the model
- Further refine the cost function (introducing terms related to UWB internal interference, node reliability, congestion, number of hops...)
- Analyze the convergence of the network to a Small-World topology through a shortest path algorithm minimizing the Network Cost Function