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Abstract—Multi-armed bandits may be used for modelling
the process of selecting one among different wireless networks,
given a set of system constraints typically formed by user-
perceived network quality indicators. This work proposes a novel
multi-armed bandit, that is made appropriate to the above
context by introducing a distinction between two actions, to
measure and to use, in order to better reflect real communication
application scenarios. The impact of this introduction is analysed
through simulations by comparing a traditional multi-armed
bandit algorithm against methods that integrate the new concept
of measuring vs. using. Results show that performance in terms
of regret can be significantly improved using the proposed
algorithms if the period needed for measuring is at least 3 times
shorter than the one for the using action. The classical method
would require a significantly shorter measuring period to reach
the same regret, i.e. much stricter constraints on the allowed
measure action duration.

Index Terms—Multi-armed bandit, exploration, exploitation,
regret, learning, UCB, wireless network selection.

I. INTRODUCTION

In cognitive radio, awareness of the surrounding radio en-
vironment is key to enabling cognitive devices to react, adapt,
and eventually optimize resource usage and performance, as a
function of radio conditions.

The above concept can be extended for modelling the
actions involved in selecting one among different available
wireless networks, possibly made of different technologies,
that may be available in a given geographical area at a given
instant in time, based on a criterion of optimality. When
the only a priori knowledge, made available at the cognitive
device, is formed by a survey of available networks, prediction
in performance estimation for each of the available networks
may drive the selection decision towards maximum reward.

The above problem falls in a category of classical opti-
mization problems that has been named “Multi-Armed Bandit
(MAB)” [1], [2].

In classical MAB, only one action is modelled: the selection
action. In real application network selection scenarios, we
need, however, to represent at least two steps in the selection
process, that is, performance prediction by measuring vs.
effective use of the resource. This introduces an additional
complexity to the selection action, that must be integrated in
the optimization process.

In order to solve the above realistic network selection
problem, we propose, in this paper, a modified MAB model,
and related algorithms, that incorporates two possible actions
at a given decision time: measuring vs. using. Results obtained
by applying the proposed method vs. using classical MAB so-
lutions are compared; in particular, we analyse one of the most
extensively-used MAB algorithms of the “Upper Confidence
Bound (UCB)” family, named UCB1, since this has proved to
produce the minimum regret under given boundary conditions,
when the “using” action only is foreseen [3].

The paper is organized as follows: Section II makes a brief
overview of MAB problems and the algorithms available in
literature for its solution; Section III introduces the proposed
model, while Section IV describes the new algorithms; Sec-
tion V presents simulation results and contains a discussion;
conclusion and future work are reported in Section VI.

II. MULTI-ARMED BANDIT PROBLEMS

Multi-armed bandit is a learning-theory, well-known, re-
source allocation problem. The classical model includes 1
player and K arms; arms provide mutually independent
stochastic rewards, characterised by unknown average values.

At each step, the player selects one arm and obtains the
corresponding reward realization as a feedback. Since no a
priori knowledge is available to the player, the selection in the
first step is random. Typically, in succeeding steps the player
cycles all possible arms in order to form a reference record of
reward values for all possible given choices.

After this “initialization”, the decision problem consists in
estimating which of the arms may contribute to produce, in
a given time horizon, the maximum cumulative reward, that
is defined as the cumulative reward obtained when always
choosing the arm with the highest reward average value.

A problem that arises is the exploration vs. exploitation
trade-off. Exploration indicates that the player chooses an arm
which is not known to be the best one, i.e. the one with
the highest average reward, just to improve the knowledge on
its reward, while exploitation indicates that prior observations
should be exploited to select the arm that is thought to be the
best one, the one that can offer the highest average reward.
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In [1], regret, i.e. the difference between the above maxi-
mum cumulative reward and the cumulative reward obtained
by the actually selected arms, was proposed as an evaluation
parameter for measuring algorithms performance. It was also
shown that the asymptotic best achievable performance is a
regret that grows logarithmically with time. In [4], the problem
was extended to M multiple plays, and later on a switching
cost was also introduced [5]. Reference [6] proposed easy-
to-compute index-type algorithms, and, in 2002, the UCB1
algorithm was introduced [3], where it was shown that the best
achievable performance is a regret that grows logarithmically
uniformly over time, and not only asymptotically. UCB1 was
later widely used in literature [7], [8]. In the recent past,
several variants of the above algorithm were proposed, such
as MUCB [9] and LLR [10], to cite a few.

In the context of wireless network selection, the arms might
represent the different networks, and the rewards might be, for
example, the quality of communication experience they offer.

III. THE NEW PROPOSED MODEL

The proposed model is introduced in the following. Time
is divided into steps. There are 1 player and K arms, K =
{1, . . . ,K}. A reward is related to each arm: ∀ k∈K, reward
{Wk(n) : n∈N} is a stationary ergodic random process related
to arm k; its statistics are not known a priori. Given a time
step n, Wk(n) is a random variable that can assume a value in
the real positive numbers set R+; Probability Density Function
(PDF) of Wk(n) is not known a priori; µk is the mean value
of Wk(n), associated to arm k: µk = E(Wk(n)) ∀ k∈K.

There are two distinct actions: to measure (“m”) and to use
(“u”); at the beginning of time step n, the player can choose
to apply action a to arm k: cn = (an , kn) , a∈{m,u} , k∈
K. Every choice cn obtains a feedback f(cn). Measure and
use actions have durations TM and TU respectively; TU =
NTM , N ∈N.

Feedback f(cn) is a pair, composed by: 1) a realization
of Wk(n) at time step n, wk(n): it is the current reward
value associated to arm k; 2) a gain g(cn); therefore: f(cn) =
(wk(n) , g(cn)).

Gain g(cn) is a function of the chosen action and of Wk(n);
it is always equal to zero when measure action is chosen and
it assumes the value of the realization of Wk(n) at time step
n, wk(n), when arm k is used at time step n:

g(cn) =

{
0 ∀ k if an = m

wk(n) if an = u
. (1)

Performance of an algorithm can be expressed by the regret
of not always using the arm with the highest reward mean
value: k∗ = arg maxk∈K µk.

Regret at time step n is defined as:

R(n) = GMAX(n)− E(G(n)), (2)

where G(n) =
∑n
i=1 g(ci), and GMAX(n) is the maximum

possible cumulative mean gain at time step n, obtained by
always using the arm k∗ (and never measuring): GMAX(n) =
E(G(n)) : cn = (u , k∗) ∀n.

The goal is to find an algorithm that minimizes regret
evolution in time.

Note that measure action gets a feedback in TM that is
usually shorter than TU (i.e. N > 1); this advantage, however,
is paid through the cost of having a null gain. In other words,
if at a certain time step the player chooses to measure an
arm in order to have more information about its reward (and
estimate the potential gain it can obtain if in a future step it
chooses to use it) in a shorter time TM , it “pays” this decision
by receiving a null gain.

In this model the classical exploration vs. exploitation
trade-off is slightly modified. Exploration is performed while
measuring, i.e. by acquiring information about other arms
being conscious that the prize for it is not the gain of a sub-
optimal arm (like in the classical model), but a null gain.
Exploitation, instead, is performed while using an arm, in
order to obtain the gain it can offer.

IV. EXPLOITATION OF MEASURE AND USE ACTIONS: NEW
ALGORITHMS

Two new algorithms are proposed. The first is a modified
version of UCB1. In UCB1, the selected arm is the one with
highest index, that is composed by the sum of two terms: the
estimated reward mean value and a bias, that is a logarithmic
function of time and the number of times the arm has been
selected until now [3]. The goal of the bias is to raise the
index value of an arm that has not been selected since long
time, and therefore to introduce exploration. In analogy with
this behaviour, modified UCB1, introduced here, performs
a measure action when the bias has an effect on the arm
selection, i.e. when it permits to select an arm that has not the
highest estimated reward mean value. In other words, when an
exploration would be performed in the classical UCB1, this is
converted into a measure action in this modified version. All
the other times the action performed is always use.

The second proposed algorithm is specifically thought to
exploit the difference between measuring and using. It is
divided into two phases: in the first it performs only measures,
in the second one it mostly uses the arm with the highest
estimated average value, but also measures the other arms
from time to time. The two phases are better described in
the following.

Phase 1 (initialization): during this phase the selected ac-
tion is always measure, and all the arms are chosen according
to a round robin schedule. Every arm is measured d1 times,
and therefore this phase duration is d1TM ; d1 is a parameter
that can be decided on the fly and adjusted. The goal of this
phase is to have a reliable estimate of arms reward average
value. The estimates µ̂k are therefore:

µ̂k =
1

d1

d1−1∑
i=0

wk(k + iK) ∀ k∈K. (3)

Phase 2: during this phase the player starts performing use
actions: based on the estimates obtained thanks to the first
phase, it chooses to use the arm with the highest estimated
mean reward value: at time step n the choice is therefore cn =
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(u , k̄), where k̄ = arg maxk∈K µ̂k. As feedback it obtains
f(cn) = (wk̄(n) , g(cn) = wk̄(n)): it updates therefore the
estimate µ̂k̄ and obtains the arm’s reward realization at time
step n as gain. At the next step where the player can make a
choice, i.e. after a period TU , the chosen arm will be the one
with the highest estimated mean reward value, and so on.

However, in this phase also some measure actions are
provided. The first measure is performed after d2 uses, i.e. after
a period d2TU . After that, intervals between measures grow
logarithmically with time. To be more precise, if ti indicates
the instant in which the measure should start (and, given
that time is divided into steps, the measure will effectively
start in the first time step ni that begins right after ti),
ti = ti−1 + log ti−1, with i ≥ 1, i0 = d2TU > 1. At each
measure action, the arm chosen for being measured is the one
with the oldest estimate, i.e. the one whose estimate is the less
updated.

Algorithm pseudocode
initialization: measure each arm d1 times with round-robin
schedule
loop

if n : t < tnext then
k̄ = arg maxk µ̂k → cn = (u , k̄)
f(cn) = (wk̄(n) , g(cn) = wk̄(n))
Estimate µ̂k̄ update
t = t+ TU

else
k̄ = k with less updated µ̂k → cn = (m, k̄)
f(cn) = (wk̄(n) , g(cn) = 0)
Estimate µ̂k̄ update
t = t+ TM → tnext = t+ log t

end if
end loop

The ideas behind the proposal of such an algorithm are the
following: with the first phase it can collect an estimate in
the shortest possible time; it should be “reliable enough” for
taking next decision (i.e. which arm to use), and that depends
on d1 value and on the arms reward distributions (unknown). A
null gain throughout all this phase is accepted with the idea of
having “stronger” estimates for future decisions (exploration).

Based on these estimates, decisions are taken in the second
phase (exploitation). Anyway the estimate of the used arm
is continuously updated, and the periodic measures permit to
update all the other arms estimates. The rule of logarithmic-
growing intervals between subsequent measures was inspired
by results in literature [1], [3]. In fact, a regret that grows
logarithmically with time is the best performance it can
be obtained. By inserting measure actions with logarithmic-
growing intervals, regret’s logarithmic growth is not perturbed,
performance does not get worse for its effect.

During the first phase, where only measures are performed
and the obtained gain is equal to zero, the regret in time can
be expressed by a straight line with a slope βM = µ∗

TM
.

During the second phase the regret can still be expressed by

a straight line with a slope β that may vary. When a measure
is performed β = βM = µ∗

TM
. When a use is performed, the

slope depends on which arm is being used. In mean, if arm
k is being used, βk = µ∗−µk

TU
. Considering all the arms, the

slope is

βU =

K∑
k=1

pkβk, (4)

where pk is the probability of using arm k, that depends on
rewards distribution and the chosen algorithm.

V. EXPERIMENTATION

A. Simulations

Regret obtained by classical UCB1 and the two algorithms
introduced in Section IV was analysed.

Simulations were performed with different values of
TM/TU ratio, that correspond to systems able to provide a
measure in a time that is a certain percentage shorter than
using period. In particular, recalling that TU = NTM , N ∈N,
simulations were performed with 1 ≤ N ≤ 7.

Other simulations details are the following: there are 5
arms: K = 5; reward values are binary, i.e. Wk(n)∈ {0, 1};
PDF of Wk(n) follows a Bernoulli distribution with success
probabilities fixed to these values: µ1 = 0.6 , µ2 = 0.8 , µ3 =
0.1 , µ4 = 0.3 , µ5 = 0.7.

Moreover, the proposed algorithm was used twice, with two
different values of the number of times each arm is measured
in the first phase: d1 = 1 and d1 = 5; the initial interval
coefficient value between measuring instants was set to d2 =
5. All results are obtained through the mean of 500 runs and
are reported in Section V-B.

B. Experimental results

In the shown examples, TM/TU ratio starts from value of
1 (Figure 1) and then decreases: in Figure 2 TM/TU = 1/3
and in Figure 3 TM/TU = 1/6.

Regrets obtained with both versions of UCB1 show a trend
that is logarithmic with time. Modified UCB1’s regret reaches
much higher values compared to classical UCB1’s ones when
TM = TU : this was expected because the latter always use
an arm, obtaining therefore a gain, and there is in fact no
“cost” for doing this since the duration of the two actions are
the same. As TM/TU ratio decreases, however, this “cost”
becomes considerable, and therefore the gap between the
performance of the two UCB1 algorithms becomes smaller.
This is due to the fact that when modified UCB1 performs an
exploration, i.e. measures, it “wastes” less time.

When TM/TU = 1/6, shown in Figure 3, UCB1’s modified
version shows a regret that is always lower than the classical
version. Therefore N = 6 is the value that permits to have
a significant performance improvement even with the same
algorithm, slightly modified to better adapt to the proposed
model. This means that measure becomes interesting when
the system is able to provide it with a duration 6 time inferior
to the use duration.
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Fig. 1. Comparison among regret obtained with classical UCB1, modified
UCB1 and the proposed algorithm (with d1 = 1 and d1 = 5) when TM =
TU .

By analysing performance in terms of regret obtained with
the new proposed algorithm, even in this case as TM/TU
decreases performance of the new algorithm increases, i.e. its
regret decreases. This was expected since it means that the
measure action presents a lower “cost” in terms of time spent
for it.

When TM = TU the new algorithm overcomes UCB1’s
performance until step 2 · 104 in both cases d1 = 1 and d1 =
5 (except for the very first steps, as better explained later),
because the initialization phase is more efficient, but presents
a higher regret in the next steps, because there is no “cost”
for using an arm and obtain its gain.

As it can be seen in Figure 2, it obtains significantly
better performance as TM ≤ 1

3 TU , with an always-lower
regret (at least until step 105, time horizon used in these
simulations). Therefore by better exploiting the possibilities
that the proposed model offers, even with a very simple
algorithm, it suffices to have a ratio TM/TU ≤ 1/3 to obtain
significantly lower regret values.

Another consideration should be done on the very first steps.
Since in the first phase the proposed algorithm performs only
measures, and therefore obtains a null gain, its regret is always
higher than the one obtained through an algorithm that uses an
arm. This cannot be avoided, given the model, if not skipping
the only-measures phase. The worst case, i.e. when TM = TU ,
is shown in Figure 4. Here it can be seen that for the first
100 steps (case d1 = 1) and 350 steps (case d1 = 5) new
algorithm’s regret is higher than UCB1’s one.

Figure 5 shows the average number of time steps needed
to new algorithm’s regret to get a lower value compared to
UCB1’s regret as TU/TM ratio increases. As it can be seen, it
becomes lower with an increasing TU/TM value; it means that
fewer steps are necessary to “win” over UCB1 if TM becomes
smaller respect to TU .

Time required to “win” over UCB1 depends on TU/TM
and on the number times d1 each arm is measured in the first
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Fig. 2. Comparison among regret obtained with classical UCB1, modified
UCB1 and the proposed algorithm (with d1 = 1 and d1 = 5) when
TM/TU = 1/3.
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Fig. 3. Comparison among regret obtained with classical UCB1, modified
UCB1 and the proposed algorithm (with d1 = 1 and d1 = 5) when
TM/TU = 1/6.

phase of the algorithm.
In some practical situations it is more desirable to obtain

a lower (than UCB1) regret as soon as possible, even if this
will be “paid” with worse performance in the following steps.
This trade-off, based on TU/TM ratio and the chosen value
for d1, strongly depends on scenario parameters, number of
arms and rewards distribution.

VI. CONCLUSION AND FUTURE WORK

In this work a new model for multi-armed bandit problems
was proposed. Its main feature is the introduction of two
distinct possible actions the player can perform: to measure
and to use.

This new model was introduced in order to better reflect
real practical scenarios. As already mentioned, an example of
such a scenario could be a device that must choose between
different wireless networks based on the performance they can
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Fig. 5. Average number of time steps needed to new algorithm’s regret to
get a lower value compared to UCB1’s regret, with an increasing TU/TM

ratio.

offer, where the performance can be expressed as SNR, the
average delay, the jitter or any other parameter of interest in the
data exchange. With this model multi-armed bandit problems
can potentially be closer to reality.

The impact of the introduction of such a model was analysed
and discussed through simulations, in which the performance
in terms of regret (a classical performance evaluation param-
eter often used in MAB problems) of a modified version of
UCB1 algorithm and a new proposed algorithm, that exploits
the introduced model novelties, is evaluated and compared to
the one obtained by classical UCB1.

Results obtained from the performed simulations show that,
as the ratio between TM and TU decreases, i.e. the measuring
period duration gets smaller and smaller respect to the use
period one, performance of both tested algorithms increases:
regret grows slower and reaches lower values. In fact, the same
measure action is performed in a smaller period, in this sense

the measure is more “powerful”.
It can be noted that a ratio TM/TU ≤ 1/6 is needed

for the modified UCB1 in order to obtain a regret that is
lower than classical UCB1’s one; otherwise measure is not
“powerful” enough and the choice to perform such an action
is more a disadvantage than an advantage. Less restrictive
constraints, i.e. a ratio TM/TU ≤ 1/3, are sufficient to obtain
significantly better performance (always compared to classical
UCB1 algorithm) with the proposed algorithm.

Moreover, the initial “loss” duration, i.e. the initial period
where new algorithm’s regret grows more than UCB1’s one,
gets lower as TM/TU ratio decreases. In other words, the time
needed to reach UCB1’s regret decreases. This is significant
considering real scenarios because, given a TM/TU ratio,
it can affect the decision of the measuring phase duration
Kd1TM .

Future work could cope with deeper investigation on the
trade-off between measure and use: how many measures vs.
how many uses need to be performed in function of the
scenario parameters. Moreover, other algorithms that can better
exploit the new proposed model and obtain therefore better
performance in terms of regret can be found and tested.
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