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This chapter investigates the effect of introducing cognitive mechanisms
in the routing function of a wireless network. First, a review of existing
proposals for introducing cognition in the routing process is presented.
Next, a routing cost function incorporating measurements of the instan-
taneous behaviour of the external world, represented by the interference
suffered by overlaid networks, is defined. The function is applied in the
framework of IEEE 802.15.4a-like low data rate and low cost networks
for mixed indoor/outdoor communications. The behavior of a network
of nodes that implements the cognitive approach in the routing module
is analyzed by simulation, measuring network performance and network
lifetime. Results indicate that the introduction of a mechanism that
allows the routing strategy to adapt to the environment and to adjust
its principles of operation as a function of both external and internal
unpredictable events leads to a remarkable improvement in network per-
formance.∗

1.1. Introduction

The introduction of the cognitive principle in the logic of a wireless network
requires extending the cognitive concept to rules of operation that take into
account the presence of several nodes in the network as well as their instan-
taneous configuration. In this perspective, the design goal moves from the
definition of a single smart device to a network of smart devices that must
be capable of efficiently coexist in a given geographical area by using co-
∗An earlier version of this work was presented in the invited paper Cognitive routing in
UWB networks, by L. De Nardis and M. G. Di Benedetto, published in the Proceedings
of the IEEE International Conference on UWB 2006, pp. 381–386 (September, 2006).
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operation. This goal requires the integration of cognitive principles in the
rules of interaction between nodes in the network: the set of wireless nodes
should form a social network that must be modelled and analyzed as one
entity in order to optimize the design of network functions such as resource
management and routing.
In this investigation we focus on the introduction of the cognitive principle
in the logic of a wireless network as regards routing. To this aim, we first
review existing investigations on the application of the cognitive principle
to the routing problem. Next, we describe our approach to cognitive rout-
ing for wireless networks, originally proposed in [1]. We assume that the
routing function incorporates measurements of the instantaneous behaviour
of external world, as represented for example by current network status in
terms of interference suffered by an overlaid network. The framework that
we consider for our research refers to low data rate and low cost networks
for mixed indoor/outdoor communications investigated within the IEEE
802.15.4a Task Group ( [2, 3]). Within this group, an Impulse Radio Ultra
Wide Band (IR-UWB) physical layer, capable of providing the accurate
ranging information required for accurate positioning was adopted. The
IEEE 802.15.4a Task Group concluded its activity in March 2007, when
the new standard was released [3].
The chapter is organized as follows. In Section 1.2 we review previous work
on the cognitive routing problem, and provide a description of the main con-
tributions on this topic. In Section 1.3 we introduce our proposed approach,
starting from the model for the routing module, and describe strategies for
route selection that take into account UWB features (power limitation, syn-
chronization, battery limitation, interference, etc.) and coexistence issues.
In Section 1.4 we define a routing cost function that incorporates the model
of Section 1.3. The approach is analyzed and investigated by simulation as
described in Section 1.5. Section 1.6 concludes the chapter.

1.2. Previous work

Research activities related to the introduction of cognition in the routing
process have been carried out in the last fifteen years with particular in-
terest to the introduction of learning capabilities in the routing algorithm.
In the following we will start our review from earlier works on cognitive
routing, that mainly addressed the case of fixed and wired networks, and
focused on the optimization of internal network behavior, without consid-
ering the problem of interaction with external systems [4–7]. We will then
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analyze more recent works, where the growing interest for cognitive radios
led to the proposal of routing protocols capable of coping with the frequent
topology changes due to the channel switching of cognitive radios forming
the network [8–11].

In [4] the authors propose the application of computing intelligence to
the routing problem, by introducing a set of agents inspired to the behav-
ior of ants in an ant colony. The agents, which can be implemented in the
form of probe packets, explore the network in order to collect information
on average end-to-end delay, and propagate backward in order to update
the intermediate routers according to the collected information.
The authors move from previous work on artificial colonies-based routing
and introduce learning capabilities by means of a reinforced learning mech-
anism based on artifical neural networks. The proposed solution can be
summarized as follows:

• An artificial neural network is implemented in each router. The neural
network receives as input the probability of selecting each possible next
hop towards a given destination and the average trip time towards that
destination using each possible next hop, and provides as output the new
values of probabilities and estimated trip times to the same destination
for each possible next hop;

• At each hop, a forward ant traveling to a given destination selects the
next hop by using the artificial neural network;

• When an ant propagates backward from the destination to a previously
visited node, it updates the weights of the neural network and the rout-
ing table according to the measured trip time to the destination, thus
modifying the behaviour of the neural network and the choices of the
following ants.

Simulation results reported in [4] show that the introduction of learning
capabilities can improve routing performance, leading to a slight increase
in throughput and a significant reduction in end-to-end delay.
The approach proposed in [4] for the behavior of a single node can actually
be mapped on the cognitive cycle as defined by Mitola. Each node in the
network observes the system status by receiving the measurements provided
by the ants, and takes decisions according to the observation. Furthermore,
both the system status and the impact of previous decisions are taken
into account in the learning process, impacting future decisions. Overall,
network behavior is thus the result of independent cognitive cycles taking
place in each network node.
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The concept of cognitive routing is addressed more thoroughly in [5].
In this work the authors move the learning capability from the node to
the packet, by introducing the concept of Cognitive Packets. A Cognitive
Packet (CP) is divided in four parts: the ID field (for identifying the packet
and its class of service), the DATA field (carrying user data), and two special
fields related to the cognitive routing algorithm: the Cognitive Map field
and the Executable Code field. The Cognitive Map contains a network
map, that is, an estimation of the state of the network based on previous
information collected by the packet. The Executable Code implements a
decision-taking algorithm that operates using the CM field as an input, and
a learning algorithm for the update of the CM. Furthermore, the decision-
taking and learning algorithms take into account a predefined goal set for
the packet, that is a performance metric to be optimized, such as minimum
delay or maximum throughput.
Nodes in the network play essentially two roles: a) they provide storing
capability in the form of Mailboxes, that can be read or written by Cognitive
Packets; b) they execute the Executable Code contained in each received
packet.
Whenever a CP is received by a node, the node executes the code stored in
the Executable Code field of the packet; the input to the code is constituted
of the Cognitive Map stored in the node itself, and the content of the
Mailbox in the node. As a result of the code execution any of the following
actions can be performed:

• the Cognitive Map in the packet is updated;
• the Mailbox in the node is written;
• the packet is sent on an output link;
• the packet is kept in a buffer waiting for a given condition to be met.

The authors compare the performance of their Cognitive Packet Network
with a straightforward shortest path algorithm, and show that even in the
case of very simple learning and decision-taking algorithms their approach
can improve performance in terms of packet loss and delay. Even larger
improvements in network performance can be obtained when more com-
plex learning algorithms, such as neural networks, are implemented in the
Executable Code field.
The approach proposed in [5] poses, however, several implementation chal-
lenges, in particular in terms of routing overhead due to the code to be
stored in each packet. Later evolutions of the approach moved back to a
more traditional approach, where the learning and decision-taking code is
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stored in the nodes, and its execution is triggered by the arrive of Cognitive
Packets [6]. Furthermore, Cognitive Packets only constitute a small frac-
tion of overall packets and do not carry any user data information, leading
to a solution similar to the one later proposed in [4], that was described
above.
In the original formulation of the CPN approach, the Cognitive Map field
poses an overhead issue as well, since the number of observations grows
with path length, and thus with the size of the network. In order to solve
this issue, a modified version of the protocol was proposed in [7], in order to
improve scalability and reduce overhead, making the protocol potentially
suitable for wireless networks as well.

In [8, 9] the authors propose a routing metric that models the end-to-end
delay by taking into account both the average delay introduced by collisions
on a single frequency band and the delay introduced by each channel switch
required along the path.
The work presented in [10] addresses the same problem by proposing a
solution for spreading the information on the positions of the nodes and
the channels available to each node, in order to enable efficient routing.
The proposed information exchange protocol, based on a broadacast packet
exchange, is however only tested in a very favourable scenario, characterized
by an error-free channel and collision-free medium access.

An additional characteristic of cognitive radio networks that may im-
pact routing is the fact that the network can be formed by devices com-
plying to different wireless standards. Furthermore, a network node can
potentially support more than one wireless network interface.The routing
protocol proposed in [11] deals with this aspect, by introducing a routing
metric that models the different characteristics of each radio link available
between network nodes. The metric is used to build a routing tree between
a base station and wireless nodes in the network.

Channel switching is only one of the possible solutions to allow coex-
istence between cognitive secondary users and primary users. Ultra Wide
Band radio offers an alternative solution: thanks to the huge bandwidth
used by the UWB signal and the low power levels allowed by regulation,
an UWB signal is in most cases invisible to the primary user. The main
problem in routing within an UWB network is thus to cope with the inter-
ference caused by primary users. This goal can be aachieved by including
the interference generated by such users among the routing criteria. A cog-
nitive routing model that addresses this problem, originally proposed in [1],
is illustrated in the following sections.
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1.3. Routing strategy

As indicated in section 1.1, our research is framed within the area of UWB
ad-hoc and self-organizing networks. As a consequence we assume that
the MAC strategy adopted in the network is based on our previously in-
vestigated (UWB)2 protocol [12, 13]. The basic hypothesis of (UWB)2 is
uncoordinated access in an Aloha-like fashion. The Aloha approach that
forms the basis of (UWB)2 was actually voted with a large majority of
votes as the medium access strategy for the IEEE 802.15.4a standard, al-
though a CSMA approach is also available for optional operational modes.
As regards routing strategy, key issues that must be taken into account in
the selection of a multi-hop route can be listed as follows:

- Synchronization: the assumption of an uncoordinated MAC protocol
leads to a significant synchronization overhead. In particular, control
routing packets, such as Route ReQuest and Route ReConstruct packets,
introduce the heavier overhead, since synchronization must be acquired
between terminals that, in the worst case, are not aware of each other.
On the other hand, transmission of data packets over active connections
may require lower overhead, since transmitter and receiver preserve at
least coarse synchronization between two consecutive packets.

- Power : smart management of available power in order to optimize net-
work performance while meeting the emission limits for UWB devices is
required. As a consequence, power issues should be paramount in route
selection, in order to efficiently make use of available power. The concept
of power-aware routing for ad-hoc networks was widely analyzed in past
investigation [14, 15]. Figures 1.1 and 1.2 show the impact of using hops
vs. power as the routing metric.

- Multi-User Interference (MUI): selecting power-optimized routes, by it-
self, is not sufficient for guaranteeing the efficient use of power at the
network level. The selection of a route in a high density region, in fact,
may provoke increased required power to achieve an acceptable Packet
Error Rate (PER) on all active links of such a region, due to increased
interference, leading thus to inefficient power use. MUI should therefore
be taken into account in route selection. This can be achieved by consid-
ering network topology, as shown in Figure 1.3 vs. Figure 1.4. Figure 1.3
shows the minimum-energy route, which is likely to cause high interfer-
ence due to high network density (see for example node 9). Oppositely,
Figure 1.4 shows an alternative route that takes into account network
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Fig. 1.1. Spatial power distribution in the case of minimum number of hops route
selection strategy. Brighter spots on the map correspond to higher average spatial power
density levels.

Fig. 1.2. Spatial power distribution in the case of minimum energy route selection
strategy. Brighter spots on the map correspond to higher average spatial power density
levels. Note that compared to Figure 1.1 this route selection strategy reduces the average
spatial power density.

topology, and therefore avoids the high-density region.
- Link reliability: node mobility and variable network conditions (due to

link set-up and releases, nodes switching on and off) may cause high in-
stability in selected routes, leading to frequent route reconstruction pro-
cedures, and thus high overhead. Poor reliability can easily lead to poor
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QoS. In order to reduce instability, link reliability should be incorporated
in the route selection procedure.

- Traffic load : the above criteria may potentially cause a terminal that
particularly fits one or more criteria to be more frequently selected than
others. For example, a non-mobile terminal may guarantee greater relia-
bility, and may experience therefore heavier traffic, with the consequence
of reduced battery autonomy. This negative effect can be avoided if traffic
load of each terminal is taken into account in route selection.

- End-to-end delay: as observed above, link reliability is crucial for QoS
when required, such as in ftp and http transfers. On the other hand, in
the case of voice and multimedia traffic having a low end-to-end delay is
far more important than correctly delivering all packets. Delay should
therefore also be taken into account in route selection, in order to assure
acceptable delays for time-sensitive traffic classes.

- Battery autonomy: transmission power is not the only source of power
consumption in a node, and route selection should also take into account
power consumption due to processing in the node, as for example during
the receiving action or the execution of code implementing MAC and
routing algorithms. Energy efficiency in the selection of the end-to-end
path should consider the residual energy in each node, and attribute
higher costs to nodes that are running low of energy.

- Coexistence: the above criteria refer to an autistic UWB network, and
ignore the environment in which the UWB network operates. Due to
coexistence, however, in particular with narrowband systems, route se-
lection must be able to adapt to external interference. This is where we
introduce a cognitive mechanism in the operating principle of the routing
module.

Note that according to the above criteria the route selection process must in
some cases integrate trade-offs between opposite requirements. The power
minimization component, for example, leads to routes composed by several
hops. On the other hand, the end-to-end delay favors routes with few hops.

1.4. Cognitive routing cost function

In this section, we introduce a cognitive routing cost function that is de-
fined as the sum of different sub-costs that in turn take into account each
of the routing criteria defined in the previous section. The total cost corre-
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Fig. 1.3. Example of minimum-energy route subject to high interference. The high-
lighted route between nodes 0 and 8 is potentially subject to high interference, in par-
ticular at intermediate node 9.

sponds, therefore, to a linear combination of sub-costs, where each additive
component is weighted by a specific sub-cost coefficient.
According to the criteria defined in the previous section, the cost function
over a generic link between nodes x and y should account for the follow-
ing sub-costs: synchronization, transmission power, multi-user interference,
reliability, traffic load, delay, autonomy, and coexistence. A general expres-
sion for the routing cost function can be thus written as follows:

Cost (x, y) = cSync (t) · Sync (x, y) + cPower (t) · Power (x, y) +
+cMUI (t) · MUI (x, y) + cReliability (t) · Reliability (x, y) +
+cTraffic (t) · Traffic (y) + cDelay (t) · Delay (x, y) +
+cAutonomy (t) · Autonomy (y) +
+cCoexistence (t) · Coexistence (y) . (1.1)

Note that some terms in Eq.1.1 depend on the status of both transmitter x
and receiver y, while others such as the Traffic, Autonomy and Coexistence
terms only take into account the status of receiver y. Sub-cost coefficients
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Fig. 1.4. Example of a topology sensitive minimum-energy route between nodes 0 and
8. Note that compared to Figure 1.3 this route avoids highly interfered nodes such as
node 9.

are assumed to be dependent upon time t; this assumption wants to account
for time-varying properties of the network, such as variable topology, traffic
features, and degree of cognition in the nodes.
In the following we analyze and propose a possible way for defining each
term of the cost function separately.

1.4.1. Synchronization term

This term can be defined as follows:

Sync (x, y) = δ (x, y) , (1.2)

where δ(x, y) is 0 if nodes x and y already share an active connection, and
1 otherwise.
Given the (UWB)2 access protocol, synchronization between transmitter
and receiver must be acquired from scratch for all random packets involved
in setting up a link.
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1.4.2. Power term

We define the power term as follows:

Power (x, y) =
(

d (x, y)
dmax

)α

, (1.3)

where d(x, y) is the distance between x and y, dmax is the maximum trans-
mission distance from x as estimated by x that still guarantees a target
SNR, and α is the path loss exponent. This term takes into account the
power required to transmit over the link between x and y for a given SNR,
normalized by the maximum transmit power. SNR characterizing link (x, y)
is in fact:

SNR = PT (x,y)/A(d(x,y))
PN

= PT (x,y)/(A0·dα(x,y))
PN

⇒ PT (x, y) = SNR · PN · (A0 · dα (x, y)) , (1.4)

where PT (x, y) is transmission power, A(d) is attenuation over link (x, y)
and PN is noise power. For a target SNR and given bit rate, the transmitted
power corresponding to dmax is thus:

Pmax = SNR · PN · (A0 · dα
max) . (1.5)

One has thus:

PT (x, y)
Pmax

=
SNR · PN · A0 · dα (x, y)

SNR · PN · A0 · dα
max

=
(

d (x, y)
dmax

)α

. (1.6)

In order to compute the power term the receiver node y must have an
estimate of distance d(x, y); this information is expected to be provided by
the UWB ranging module. An estimate of Pmax at node x may also be
required except in the case that all terminals have same Pmax, where an
explicit computation of such quantity is not necessary.

1.4.3. MUI term

This term takes into account the potential impact of a transmission from
x to y on the neighbouring nodes of x.
With regards to MUI, a node x should be avoided if either of the following
conditions is met:

(1) x has a large number of neighbours that could be adversely affected by
its transmission;
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(2) x has a neighbour at very short distance, that would be subject to a
strong interference during transmission by x.

Given the ranging capability provided by the UWB physical layer, we pro-
pose to use distance information in order to model the impact of x as
determined by the two above conditions. A possible way to achieve this
goal is to define the MUI term as follows:

MUI (x, y) =
1

NNeigh (x) − 1
·

NNeigh(x)∑

n=1,n!=y

(
1 −

dmin/y

d (x, n)

)2

, (1.7)

where:

• NNeigh is the number of neighbours known to x;
• n is the generic neighbour, excluding y;
• dmin/y is the distance between x and its closest neighbour, excluding y.

The value assumed by the term defined in Eq.1.7 as a function of the number
of neighbours and the maximum value of the ratio d (x, n) /dmin/y is shown
in Figure 1.5. Note that when both the conditions previously defined are
satisfied the MUI term assumes high values, thus discouraging the inclusion
of the (x, y) link in the selected route.

1.4.4. Reliability term

We measure the reliability of a link (x, y) as the combination of two factors:

• the number of packets exchanged between x and y within a predefined
observation interval: the higher is such number, the higher is the expected
stability of the link;

• the MUI potentially affecting the intended receiver y.

According to this approach, the reliability term can be defined as follows:

Reliability (x, y) =
1
2

[
1

Npackets (x, y)
+

+
1

NNeigh (y) − 1
·

NNeigh(y)∑

n=1,n!=x

(
1 −

dmin/x

d (y, n)

)2


 , (1.8)

where:

• Npackets(x, y) is the number of packets y received from x in the last
observation interval;
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Fig. 1.5. Value assumed by the MUI term for the (x, y) link as a function of the number
of neighbours of x,NNeigh, and of the maximum value of the ratio d (x, n) /dmin/y

between the distance from x to a generic neighbour n and the distance to the closest
neighbour excluding y.

• NNeigh(y) is the number of neighbours known to y;
• n is the generic neighbour, excluding x;
• dmin/x is the distance between y and its closest neighbour, excluding x.

The stability of the link, expressed by the number of packets that y has
received from x at a given time, implicitly takes into account node mobility.
Expected MUI also affects reliability and is evaluated as proposed for the
MUI term, but with reference to receiver y. As an alternative, y could pro-
vide an estimation of future interference based on the interference observed
in the past.

1.4.5. Traffic term

The analytical expression for this term writes:

Traffic (y) =
1

Bmax (y)

Nactive(y)−1∑

i=0

Bi, (1.9)
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where:

• Bmax(y) is the maximum overall rate that can be guaranteed by node y;
• Bi is the rate of the i-th active connection involving y;
• Nactive(y) is the total number of active connections at y.

As anticipated in Section 1.3, this term avoids unfair selection of routes
by increasing the cost of routes including nodes already involved in many
active connections.

1.4.6. Delay term

This term is defined as follows:

Delay(x, y) = 1. (1.10)

As a first approximation, the end-to-end delay can be considered to be
proportional to the number of hops; in this case, this term is constant.

1.4.7. Autonomy term

We give the following expression to the autonomy term:

Autonomy (y) = 1 − ResidualEnergy (y)
FullEnergy (y)

, (1.11)

where FullEnergy(y) is the energy available in y when the node is first
turned on. ResidualEnergy(y) is the energy that is left at time of evalua-
tion of the term.

1.4.8. Coexistence term

The coexistence term can be defined as follows:

Coexistence (y) =
MeasuredExternalInterference (y)

MaximumInterference (y)
. (1.12)

Note that the introduction of this term requires that the UWB receiver can
measure the level of narrowband interference.
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1.5. Simulations

The cognitive routing strategy described in the previous sections was tested
by simulation. The routing model was implemented in the framework of the
OMNeT++ simulation tool, by combining the routing cost function with
the Dijkstra shortest path algorithm. During simulations the computation
of the shortest path was carried out by a central node that communicated
the path to each node starting a new data connection. The overhead gener-
ated by the central cognitive node for the collection of the cost values and
the transmission of path information to interested nodes was neglected in
the analysis for the sake of simplicity.
The simulation analysis focused on the effect of three terms: end-to-end
delay, autonomy, and coexistence. The effect of other terms was analyzed
in previous investigations, as described in [16].

1.5.1. Simulation scenario

We considered a network of UWB devices basically following IEEE
802.15.4a Task Group specifications, and adopting thus a Time-Hopping
Impulse Radio transmission technique [17]. Furthermore, all devices
adopted the (UWB)2 MAC protocol [12, 13].
Main simulations settings are presented in Table 1.1.

Table 1.1. Simulation settings.

Parameter Setting

Number of nodes 50
Area 150 m × 150 m

Network physical topology Random node positions, averaged on 10 topologies
Channel model 802.15.4a (see [18])
User bit rate R 64 kb/s

Transmission rate 1 Mb/s
Available transmission power 74 µW (FCC limit for 1 GHz bandwidth)

Traffic model Constant bit rate connections with average duration 15 s
DATA packet length 576 bits (+ 64 bits for Sync trailer)

UWB Interference Model Pulse Collision (see [19])
Transmission settings Ns = 10, Ts = 100 ns, Tm = 1 ns
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1.5.2. External Interference

In order to analyze the impact of a cognitive cost function on system per-
formance in the presence of external interferers, we introduced interference
sources modeled as wideband interferers.
Each interferer was characterized by an emitted power PTx, an activity
factor a, a transmission bandwidth BINT , and a carrier frequency fc. An
interferer was randomly added or removed from the system every TSwitch

seconds, in order to take into account variable interference conditions. The
interference characteristics in terms of bandwidth and carrier frequency
were chosen in order to model a WiMax [20] transmitter at 3.5 GHz, which
constitutes at present day one of the most relevant coexistence scenarios
for UWB systems [21].
The settings used for generating the interferers are presented in Table 1.2.

Table 1.2. External interferers settings.

Parameter Setting

PTx 10 mW
Position Randomly selected

Activity factor a Uniform random variable in (0,1)
Carrier frequency fc 3.5 GHz

Transmission bandwidth BINT 10 MHz
Update time period TSwitch 100 s
Initial number of interferers 2

1.5.3. Cost function settings

In the simulation we compared three different coefficient sets in the sce-
nario defined in Sections 1.5.1 and 1.5.2. The coefficient sets are presented
in Table 1.3. Note that the coefficients of the other terms are set to zero in
the investigation presented in this work (see [16] for the analysis on other
terms).

Set 1 only takes into account delay in the determination of the best
path. Given the definition of the Delay cost term in Section 1.4.6, set 1
leads to the selection of the path characterized by the minimum number of
hops.
Set 2 favors the selection of paths minimizing the Autonomy cost (see Sec-
tion 1.4.7), and aims at maximizing network lifetime.
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Table 1.3. Cost function coefficient sets.

Coefficient Set 1 Set 2 Set 3

CDelay 1 0.0001 0.0001
CAutonomy 0 1 0

CCoexistence 0 0 1

Set 3 leads to the selection of paths involving nodes suffering external inter-
ference in a minor way, thus aiming at the best possible coexistence between
UWB and external interferers.

1.5.4. Simulation results

Two runs of simulations were carried out.
The first run focused on network performance in presence of external inter-
ference. Performance was expressed by throughput and end-to-end delay.
The second run analyzed network lifetime both in presence and absence of
external interference. Network lifetime was expressed by the time at which
the first node run out of battery from network start-up.
In the first simulation run, Network performance was analyzed for the three
coefficient sets defined in Section 1.5.3, in the presence of external interfer-
ence.
Throughput and end-to-end delay in the three cases are shown in Fig. 1.6
and Fig. 1.7 , respectively. Results highlight that the adoption of a routing
cost function that takes into account measured external interference (Set
3) significantly improves both throughput and delay compared to the case
where only UWB network internal status is considered in the route selection
(Sets 1 and 2).

As discussed in Section 1.3, however, a cost function that takes into
account only one specific aspect (e.g. Power, Interference, or Delay) in
route selection may lead to unfair energy consumption among terminals.
In order to address this issue we analyzed fairness in energy consumption
for the three coefficient sets by measuring network lifetime.
Two cases were considered: absence of external interference, and presence
of interferers according to the settings of Table 1.2.
Previous work on energy-aware routing suggested that a routing cost func-
tion that takes into account the residual autonomy of the nodes leads to
high fairness and thus to long lifetime [15]. Results obtained in absence of
external interference, as presented in Fig. 1.8, are in agreement with the
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Fig. 1.6. Throughput for the coefficient sets defined in Table 1.3.
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Fig. 1.7. End-to-end delay for the coefficient sets defined in Table 1.3.

above statement.
Set 2, that takes into account battery autonomy in route selection, leads
in fact to the longest network lifetime. Note that Set 3, in the absence
of interference, performs end-to-end delay minimization, and leads to the
same results of set 1.
The introduction of external interference according to the settings in Table
1.2 significantly affected the behavior of the 3 coefficient sets. Results in
the presence of interference are presented in Fig. 1.9, showing that Set 2
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is no longer the optimal choice in terms of network lifetime. The selection
of nodes close to external interference sources causes in fact high power
consumption in such nodes due to retransmission attempts, and reduces
network lifetime. Set 3 is in this case the best choice, since it guarantees
similar network lifetime while providing better network performance.
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Fig. 1.8. Time of first node death as a function of the coefficient set without external
interference.
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Fig. 1.9. Time of first node death as a function of the coefficient set in presence of
external interference.
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1.6. Conclusions

In this chapter we analyzed the problem of introducing a cognitive approach
in the routing problem. Existing contributions on this topic have been re-
viewed, identifying the main solutions proposed to this problem for both
wired and wireless networks. Next we focused on the Ultra Wide Band case,
analyzing the problem optimal choice of a multi-hop route in a network of
low data rate UWB terminals of the IEEE 802.15.4a type. Based on this
analysis we proposed a cognitive routing cost function that takes into ac-
count the status of both the UWB network and the external environment
by means of additive cost terms weighted by a set of coefficients.
The adoption of different sets of coefficient allows for a straightforward
tuning of the cost function. Different sets can be adopted to support traf-
fic with different characteristics. Non-interactive data traffic, for example,
such as ftp transfers, requires a high degree of data integrity but can tol-
erate high end-to-end delays. The cost function can be customized for this
traffic class by increasing the relative weight of the Reliability cost term,
while reducing the weight of the Delay term. Oppositely, voice-like traf-
fic can tolerate a relatively high PER, but poses strong constraints on the
end-to-end delay. In this case the role of the Reliability and Delay terms
are inverted, with the latter term characterized by a much higher relative
weight than the former one.
In the results shown in Section 1.5, we focused on a single traffic scenario,
characterized by low bit rate connections at constant bit rate, and we in-
vestigated the impact of a subset of the cost function terms on network
performance and lifetime by means of computer simulations.
Results show that with the introduction of information related to the ex-
ternal interference the routing strategy acquires the capability of adapting
network behavior to the external environment, leading to a significant in-
crease in network performance. Furthermore, the reduction of PER and
retransmission attempts obtained by taking into account external interfer-
ence sources in route selection contributes to achieve a fair power consump-
tion among nodes, and thus a long network lifetime.
The proposed cognitive routing approach focuses on a subset of the actions
defined in the cognitive cycle: in particular, the algorithm observes the
network status, decides by selecting the best route given the observation
data and acts by modifying the routing tables of the nodes involved in the
path. We foresee that the introduction of a learning capability based on
the result of previous decisions can further improve the performance of the
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algorithm. A possible solution to introduce such learning capability is to
allow network nodes to modify the cost function coefficients on the basis
of the impact of previous routing decisions on network performance. In or-
der to do so, however, several challenges must be addressed, including the
definition of the feedback mechanisms and of the algorithm for coefficients
tuning. Addressing such challenges will be the main subject of our future
research activities on this topic.
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