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Abstract—Cooperative spectrum sensing has been proposed
as a solution to increase the sensing function accuracy in cog-
nitive radio networks, but the research has, so far, mainly
focused on static scenarios, all but neglecting the impact of
mobility on spectrum sensing. In this work a novel coopera-
tive spectrum sensing scheme for mobile cognitive networks,
based on a correlation-based, mobility-aware node selection
algorithm is proposed. Correlation among sensing decisions
is used to divide nodes into groups, and mobility is taken into
account in the group leaders selection by means of a node
selection metric that considers both sensing performance and
mobility. Performance of the proposed algorithm is evalu-
ated by computer simulations taking into account mobility and
a detailed modeling of temporal and spatial correlation of fad-
ing and shadowing components in the channel path loss, going
way beyond the performance evaluation carried out in previ-
ous works on correlation-based cooperative sensing schemes.
Simulation results highlight that the proposed metric leads to
a significant increase of the update period required to main-
tain acceptable sensing performance, and correspondingly to
a strong reduction in the overhead caused by the grouping and
node selection procedure.

Keywords—cognitive radio, cooperative spectrum sensing, mo-
bility, node grouping, node selection.

1. Introduction

Cognitive radiotechnologyhasbeenproposedsa potential
solutionto increasee ciency in spectum utilization asit
enablesoppotunigic temporaily unusedfrequencybands
acces®ncethe presenc®f thesocalledprimary user(PU)
is excluded. Spectum sensingwasinitially adoptedasthe
solutionfor detemining whethera bandis available. How-
ever, dueto longgandingopenresearh issuesin the im-
plementationof reliable sensingsolutions,FCC suggsed
to usedatabasegor detectionof PUs presencesspecialy
in the so-calledspectum white spaceswhoseoccupancy
is relatively stable [1]. Researh on spectum sensingis
gill highly encouragd by FCCitself, assensingcancom-
plementand extendthe informationprovided by databases
and guaranteeeliable and e cient cognitive accessn all
situations.Undercurrent FCCrules,in fact, databasewill
only store PUs locations,thus not guaranteeing ective
seconday-to-secondar coexistence. In this contet spec-
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trum sensingcanprovide additionalavarenessnd,asare-

sult, suppot the congruction of dynamic,seconday-aware
radio ervironmentmaps.

Spectum sensingcan howvever only be adoptedif reliable
informationcanbe gathered.Severalinvegigationspointed
out that sensingcaried out locally by single devices is

not accurateenoughfor sak coexistencebetweenprimary

and seconday users[2]. Thus, reliable spectum sensing
requires cooperationbetweennodes. In a widely adopted
scenaio, alsoconsideredn this work, every nodein a cog-

nitive network senseghe spectum, and sendsinformation
to the fusion centrewherea global decisionis taken. One
can nd mary paperstadkling the problemof optimal de-

cision makingin a fusion centre[3{[6 ].

In cooperatie spectum sensinghefusioncentrecombines
the decisionsfrom N seconday sensingusers(SUs). As-

suming the k-out-of-N rule the global false alam proba-
bility Qf andthe global probability of detectionQq canbe
obtainedasfollows [7]:

qé('ﬁ)a"um” ; M
ng<< 'I\' >Pé(1Pd)N g @)

whereP; andPy arethe falsealam anddetectionprobabil-
ity, respectiely, averaged over the statidics of N nodes.
Equations(1) and(2) may simplify in the caseof the AND-
rule, which is in factthe N-out-of-N rule, andin the case
of the ORrule (known as 1-out-of-N rule). In the latter
casethe Egs. (1) and(2) aresimpli ed to:

N
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Qi=1-JJ(1—Py: (4)

i=1
Underthe Condant False Alarm Rate(CFAR) requirement
the desiredQ; is setfor the whole seconday network. The
correspondingvalue of B;, assumeddentical for every
node,canbe thusobtainedas:

Ri= 1-¥1-Q for i=1::N: (5)
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This impliesanidenticalsensinghresholde for every sen-
sor given by [8]:

e=[(Q*R,)=vNs) + 1]s&y; (6)

whereN;y is the numberof sensingsamplegper nodetaken
to decisionmaking, Q%(-) is the inverse Q-function and
s&, is the noisepower at SU.

Cooperatie spectum sensingrequiresexplicit information
exchangesbetweennodes. Minimizing the overheadintro-
ducedby sud exchangs,soto guaranteenegy e ciency
andlow complity, is animportantaspecto beconsidered
in the designof a cooperatie spectum sensingalgorithm.
To this aim, selectionof nodessubsetto take careof sens-
ing has beenproposed,in order to limit the number of
nodesrepotting their sensingresultsto the fusion centre.
This is typically achieved by groupingthe nodesaccording
to a given criterion, and selectinga nodein ead group
as representati@/leaderfor that group. The identi cation
of criteria for nodegrouping and group leaderselectionis
thus a fundamentalgtep in the de nition of sud sensing
algorithm. A detailedanalsis of the literature relatedto
node grouping for sensingpurmosesis presentedn Sec-
tion 2. A solution that received signi cant intereg in the
lag few yearsrelies on the measureof the correlation be-
tweensensingneasurementsken by the nodes.Sincethis
is theapproab alsoconsideredn this work, previouswork
on this speci ¢ topic is discussedn Section3.

An aspecthatwasseldomconsideredn the de nition and
performanceevaluationof cooperatie sensingschemesis
mobility. There are in fact only a few paperstadling
the role and impact of mobility in cooperatie spectum
sensing. In [9], the authorspresenta theoreticalanaysis
con r ming that node mobility increasesspatial diversity
and as a consegenceimproves the sensingperformance.
The resultspresentedn that work highlight the trade-o
between the numberof sensorsand the numberof mea-
surementgsaken by ead sensor The authorsin [10] base
their work on [9] but introducemoreaccurateassumptions
and provide more detailedresults. Moreover, the expres-
sion for the numberof measurementequired for a given
velocity, detectionand false alam probability is derived.
The work in [11] comparesresultsobtainedon the basis
of the aforementionedvorks and presentsesultsobtained
by simulationundermorerealigic conditions,shaving that
relaxation or removal of someof the assumptiongakenin
previous work hasa signi cant in uence on performance.
However, the abore-mentionedvorks focusedon anayzing
theimpactof mobility on network perfformanceratherthan
on proposinganapproat towardsthe designof anoptimal
CSSsdemein presenceof mobility.

In theabove context, thiswork proposes cooperatie sens-
ing schemeaimingat groupingnodesandselectinga leader
for eat group to be involved in the sensingprocess.The
schemerelieson themeasuref comrelationin sensingleci-
sionsfor nodegrouping,andadoptsa mobility andsensing
aware metiic for the group leadersselection. The con-
cept of node grouping basedon correlation is leveragd
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from [12], and combinedwith a novel metic for group

leaderselectiorthattakesinto accounimobility andsensing
performance soto guaranteadeaiatesensingoerformance
for extendedpeliods of times. The proposedapproab is

thencomparedwith previous solutionsby computersimu-

lations,implementingaccuratenodelsfor the mobile radio

channel,taking into accountspatialand temporalcorrela-

tion for both fadingand shadaving components.

The original contiibutionsintroducedin this work canbe

thus summaized asfollows:

e anovel solutionfor cooperatie spectum sensingak
ing into accountsensingperformanceand mobility;

e an extensiwe performanceevaluation of correlation-
basedcooperatie spectum sensingunder realigic
conditionsthat foreseeaccuratemodelingfor spatial
and temporalcorrelation of channelparametersand
take into accountthe impact of sud parameteron
sensingperformanceof nodes;

o the anaysis of the nodemobility impacton correla-
tion-basedcooperatie spectum sensing.

The impactof channelcorrelationand mobility, in pattic-

ular, are aspectsall but neglectedin previous works on
correlation-basedooperatie spectum sensing[12].

The paperis organizedas follows. In Section 2, previ-

ous work on node grouping and selectionalgoiithms in

cooperatie spectum sensingis reviewed. In Section 3,

correlation-basedelectionschemesare analzedin detail.
In Section4, the consideredsystem model is descibed,
while in Section5 the proposedtooperatie spectum sens-
ing scheme,basedon a novel mobility-aware leaderselec-
tion metric is presented Simulationresultsfor the anaysis
of the proposedapproat and its compaison with previ-

ouswork arepresentedn Section6, while Section7 dravs
conclusionsandidenti es future researh lines.

2. Node Groupingin Cooperatie
Spectum Sensing

A large numberof cooperatingSUsguaranteesigh global

probability PUs detection. However, properindependent
nodesselectionfor cooperatiorcanimprove the robugness
of cooperatie sensing[13], [14]. Moreover, global false

alam probability may be signi cantly reduced[8]. Node

selectionreducesalsothe overheadrelatedto unnecessar

sensinginformation transmissionas well as provides sig-

ni cant enegy savings.

Several di erent approabesto node selectionhave been
proposedin the literature,and are brie y reviewed in the

following.

2.1. Best-SNRSelectionAlgorithm

Beg-SNR selectionalgolithms are basedon selectingthe
nodeswith the highes signal-to-noiseratio for coopera-
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tion [8]. Under the Congant Detection Rate (CDR) re-
guirement,every nodemaintainsa congantlocal detection
probability by adaptingthe detectionthresholdon the basis
of expectedSNR. Hence, the false alam probability de-
pendson the expectedSNR: the higherthe SNR, the lower
falsealam probability. Therebre, selectionof the cooper
ation nodeswith the highes SNR lowers the global false
alam probability in the network (Qx).

UnderCFAR requirement,the nodeswith the highes SNR
have the highes detectionprobability Thus,the SUswith
the highe$ SNR shouldalways be chosenfor cooperation.
However, this requiresthe nodesto be aware of their own
SNR and deliver it to the fusion centre,while the fusion
centrehasto receie the informationfrom every SU in the
network. Variable channelconditionsinduce SNR varia-
tions, that mug be dealt with, for example with periodic
updatesof the egimatesof the SNR for ead node.

The beg-SNR selectionapproab hasbeeninvedigatedby
Peh and Liang in [8]. The authorsproved that through
selectionof a reducednumber of nodessigni cant per
formanceimprovementcan be obtained. For example, by
usingonly 19 out of 200 nodesfor cooperatie sensingthe
Qr decreasdrom 6.02%to 0.06%underthe CDR require-
mentwith OR-rule aswell asan Qq increasefrom 92.04%
to 99.88%underthe CFAR requirementwith AND-rule is
achieved.

Another algoiithm basedon the beg4-SNR selectionhas
beendescibed in [15]. In this work the seconday user
with the highes SNRis chosenin the rst iteration. Next,
every other node comparesits link quality to the fusion
centrewith its link quality to the formedy selectednode
and from the formely selectednodeto the fusion centre.
If anodedeteminesthatits own link is lessreliable,thenit
joins the bes-SNR nodegroup. Othemwise, the next beg-
SNR node amongungroupednodesis selectedand then
the procedureof compaing links andgroupingis repeated
until all of the nodesare grouped.

An interesing algoiithm relying on bes-SNR selectionhas
beenproposedin [16]. In this work nodesare classi ed
either asleadersor followersbasedon the received SNR.
Leading nodeshave good detectionperformanceand are
allowedto sensethe PU signalandbroadcastheir sensing
information. Following nodesareconsideredinreliabledue
to low SNR, so they do not broadcastheir decisions,but
rather wait for broadcated padets from leaders. Thus,
only the reliable informationis broadcasged. In addition,
the information sentby the leadersis ratherlimited, only
consising in the PU presencenformation. As a result,
the approab proposedn [16] leadsto low overheadnfor-
mation. The identi cation of nodeswith highe$¢ SNR is
however challenging,asit mug rely on the presencef the
PU during training/measuremenmteriods.

2.2.BestDetectionPerformanceSelection

Algorithmsbelongingto this family rely on nodeswith the
highes probability of detectionbeing selected17]. How-
ever, the comect identi cation of sud nodesis an open
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issue, as algorithms basedon beg detectionperformance
selectionare typically analyzed underthe assumptiorthat
the PU is always presentand thus can identify the beg
nodesas thosethat obtain the highes numberof the \PU
present"positive decisions. Thesealgorithms, similady to
thebeg-SNRonesseerbefore,arethusonly easiy applica-
ble whenthereare known periods wherethe PU is always
presentallowing to evaluatethe probability of detectionof
the nodes.

2.3.Voting Schemes

The rst representati of the voting schemesclassis the
so-called Con dence Voting [18], in which nodesbuild
reliability-relatedmeasuresThe ideais to limit unreliable
decisiontransmissionsEvery nodeis obligedto computea
con dencemetiic. In the hard decisionscenaio the local
and global decisionsare collated - in the caseof coinci-
dencethe con dence metiic is incremented othemise it
is decremented. After the training period, in which the
mettics arecomputedpnly the nodeswith the highes con-
dence metiics are allowed to repot their decisionsto the
fusion centre.

The Collision Detectionscheme[19] is basedon nodese-
lectionwith the highes comectnessneasure.The measure
noti es the numberof nodés cormect decisionswhen the
global false decisionis that the PU is not present. The
nodeswith thehigheg corectnesareselectedandinvolved
in cooperatie sensing.

The schemesbasedon voting have the advantage of being
applicablein scenaios wherethereareno periodsin which
thepresencef thePUis known in advance butthey arenot
withoutdrawbads. As they rely onthe mgority opinion, if
mog of the seconday usersfacesbad channelconditions,
thenmorecon dencegoesto unreliablenodes.As aresult,
the decisionobtainedin con dence voting may be worse
thanin atraditionalscheme.As a sidecommentthevoting
schemesarenotrobug enoughin the caseof maliciousSU.

2.4. Other Approaches

A few approabesnot falling in the abovementionedam-
ilies have beenproposedin the literature and are brie y
discussedelow.

A similarity-basedalgorithm has beendescibed in [20].
In this case the similarity measuresor pairsof nodeshave
to be computed.The similarity measurendicateshow well
nodek cansewe asthe repoiting nodefor nodei [20]. The
similarity is deteminedon the two metiics basis: respon-
sibility and availability. The responsibilityis derived for
cheding how well nodek canbe arepoiting nodefor node
i in comparson with other nodes. The availability coe -
cient measuresppropiatenesof being a repoiting node
to exclude situationswhen only a small numberof nodes
is grouped.

Selenet al. in [21] proposeda solution for the problem
of nodeselectionwhich doesnot involve nodes SNRsnor
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their pefformanceknowledge. The only required informa-
tion is the distancefrom coordinatingsensorto the other
nodes. The selectionis in fact basedon sud radiusin-
formation exchanged betweennodes. The algorithm nds
k sensorswithin the radiusseparatiorunderthe condraint
not to exceedthe desiredcorrelation probability between
selectedhodes.

The sensorsmay be selectedalso accordingto power
consumptioncondraints. The maximum power scheme
chooseghe setof nodeswith the leag power consumption
in orderto guaranteeninimal power usag [22]. The max-
imum lif etime schemechoosesa setwhich hasthe longes
minimum lifetime. In this algoiithm a tiebrealer is also
neededo switch betweensetsof nodes[22].

Ngimi et al. in the work [23] proposea schemethat com-
binesenepgy e ciency and sensingperformancein node
selection. The schemeintroducesa cog function that fa-
vors nodeswith lowed sensingand decision-transmission
enegy usag@ amongthosesatisfyingthe quality of detec-
tion congraint. Furthemore,enepgy e ciency is increased
by introducingdecisionnodes,ead acting as collector of
sensingresultsfrom a set of selectednodes,detemining
a common decisionand sendingit to the fusion centre.
The schemerequires however full knowledge aboutnodes
signal-to-noiseaatiosanddistancesbetweeneat nodeand
fusion centrein orderto operate,leadingto a signi cant
control overhead.

2.5. Correlation-BasedSelection

Finally, a few works invedigated correlation-basedselec-
tion schemes.These are basedonly on node decisions,
which are used for nding correlations between nodes.
This approab relieson the assumptiorthat nding corre-
lations betweensensingnodesand selectingonly uncotre-
latedonesshouldresultin goodsensingperformancewhile

minimizing transmissionoverheadassociatedvith repot-

ing the sensingresultsto the fusion centre. Sincethe al-

gorithm proposedn this work falls into this categoy, cor

relation-basedhode selectionalgoiithms are analzed in

Section3.

3. Correlation-Based\Node Selection

Correlation-baseaodeselectiorhasbeenintroducedn the
aforementionedvork [21], wherea network consising of
N nodesis considered All nodesare groupedin an active
setatthe algorithm beginning,while after selectiononly X
nodesmay remainin the active setwhile the res is moved
to the passie set, that includesall nodesthat are not al-
lowed to vote. In orderto make a proper selection,the
correlation measurds computedfor pairs of nodesin the
network. Then,the nodewith the highe$ summedcorrela-
tion with the remainingsensorss removedfrom the active
setandmovedto passie set. The correlationmeasuraised
in [21] is basedon the nodespositionsand associatego-
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sitioning uncetainty. An exampleof correlation measure
is the following correlationfunction (7):

R(d) =e 7

where a is a decy congant relatedto the ervironment
andd is the distancebetweensensors.

A distributedcorrelation-basedelectionapproab waspre-
sentedin [24], wherea nodeis randomy selectedo start
the procedureby broadcasng sensinginformationto the
othernodes,in the form of the received signal during the
lag sensingphase. The remainingnodeslisten to this in-
formationand egimate their correlation coe cients. Eat
nodecomparedts coe cient with a comrelationthreshold,
andif it is above the thresholdthe nodedoesnot take partt
furtherin theprocedure Nodesthathave a correlationcoef-
cient belav thresholdrandomy selecta delay andthe one
that picked the shoteg delay transmitsits received signal,
garting the next iteration of the procedure.The procedure
completeswhenthereis no remaininguncorrelatednode.
Sinceaspatt of the procedurell nodessharetheirreceived
signal, whenit is completedead nodeis capableof tak
ing the samesensingdecisionaccordingto a soft fusion
of the received signals. The work is ratherinteresing, but
therole of noisein the resultsof the correlationprocedure
is not completey addressedn the work, asthe presence
of a denoiseris assumedut its impactis not thoroughy
descibedin the paper

Prataset al. in thework [25] proposedhe Adaptive Count-
ing Rule. In the solution cooperatie network of n SUs
is considered. The adaptie rule is adoptedin the hard-
decisionfusion scheme. It optimizesthe minimal number
of SUs declaing the presenceof primary signal delived
ask. It wasshowvn that optimal value of k dependson the
amountof cormelationexperiencedby nodesaswell asthe
numberof detectordn the setandtheir pefformance.The
authorsproposedalso continuousmedanismof selection
optimal k value.

Another cormrelation-basedapproab was descibed in the
paperwritten by Y. Sunet al. [12]. In this approab the
correlation measureis computedbasedon the node deci-
sionsonly. Thus,no additionalinformation, suc as posi-
tion of nodes,is needed.Correlation-basedhodeselection
presentedn [12] is basedon similarity in decisionmaking.
The performance evaluation that suppots the approat
in [12] is however quite preliminary, asit relies on sev/-
eral simplifying assumptions.For example, authorsstate
that sensinginformationwas\g eneratedandomy accord-
ing to the probability of cormect detection between 70
and90%" [12], implying thatthe radio channelmodelwas
not taken into accountin the results. The authorsalso as-
sumethat by putting the value of cormelationthresholda
to 0.96 the nodescan be divided into 10 groups. This as-
sumptionwould not hold in generalin the real world, as
the selectednumberof nodesresultingfrom the approat
in [12] congantly changesand dependon several param-
eters,e.g.on actualpropagtion conditionsor nodesposi-
tions. Finally, the simulationresultsin [12] were obtained
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in alow-correlationscenaio for an averag signal-to-noise
ratio equal to 10 dB, while one would reasonalyl expect
a CSSsdemeto be teded in a low SNR regime, where
its improvementover local sensingis expectedto be mog

relevant.

Despitethe lack of thoroughexperimentalveri cation, the

approab proposedn [12] is appealingsinceit inherenty

takesinto accounttherole of spatialpositionsof nodesand

channelconditionsin detemining the beg set of nodes.
A solutioninspired by this approab, but also taking into

accountherole of mobility, is introducedn Section5, and

its performanceis evaluatedin Section6.

4. System Model

Themodeladoptedn thiswork foresee®\ nodesrandomy

distributedin a squareareaof side equal to R meters.Ev-

ery nodeis assumedo have the samedesiredprobability
of false alamm and therebre the same sensingthreshold
computedaccordingto Eq. (6).

The geneic nodemoveswith arandomy selectedlirection
of movementq; andvelocity v;. Anglesof movementand
velocities are uniformly distributed, with g taking values
between0 and 2p radians,and velocitiesv betweenvpin

and vmax m/s. Wheneer a node hits the border of the
square areait bouncesbadk from it accordingto a total
re ection model,while keepingthe samevelocity.

The following power attenuatiormodelis assumedor the
mobile radio channelbetweena mobile nodeand the Pri-

mary User:

channel g = pathloss,p + fading|,z + shadwing sp:
8
The pathloss dependon carrier frequency f. andon the
distanced between node and PU accordingto the well-
known Friis' formula. The carier frequencyis assumed
to be congantfor all nodes,while the distancechangsin
time propottionally to the nodevelocity. However, it is as-
sumedthat during the sensingphasethe pathlossdoesnot
chang dueto relatively small possiblevariation of nodes$
locations.
Fadingcoe cients aremodelledaccordingio Rayleighfad-
ing channel. Doppler shift is propottional to the nodeve-
locity andin the presentednodel varies accordingto the
following equation:

Df =3-v; 9)

In the model every node expeliencesindependentfading
channel (as suggded in [26]), resultingin uncorelated
fading betweendi erent nodes,but correlatedchannelco-
e cients in time for a given node.

As regardsshadaving modelling,thedecorelationdistance
dcorr has beenset accordingto Gudmundsormodel [27]

andMin andShinwork [9]. Hence the squareareaof side
R meterswasdividedinto g smaller(pixel) squarescontain-
ing di erent valuesfor shadaving. The valuesarecongant
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in time for a givenlocationaccordingto [28], soduring the
obsewationtime the shadaving valuefor every shadaving
centredoesnot chang. The valuesare randomizedwith
the nommal distribution N ~ (0; ss). However, onecan nd
more sophigicated shadeving models. Kasiri and Cai in
the work [29] applied NeSh (Network Shadeving) model
taken from the work [30]. The modelallows to detemine
correlationvaluesbetweenlinks of di erent userswhile in
Gudmundsortaseit is possibleonly for links comingfrom
one node. Since however the scenaio consideredn this
paperfocuse®on correlationbetweenmeasurementsvolv-
ing the sameprimary transmittey the Gudmundsormodel
was deemedsu cient to the purposeof this work.

In the consideredsystem every nodetakes M sensingde-
cisionsand sendsthemto the fusion centre,underthe as-
sumptionthatradio coverag betweenthe nodesandfusion
centreis always guaranteed.One can reasonalyl expect
that mobility will also signi cantly impact the topology
of the seconday network andthusthe radio coverag be-
tweennodesand fusion centre. For the sale of simplicity
the anaysis of sud impactis left for future work, while in
the presentpaperthe impactof mobility is redrictedto the
sensingresults.

Nodesin the network sharea commontime reference and
time is organizedin framesof durationT;. The sensing
information is gatheredand exchangd during a sensing
phaseof duration Tge that takes place at the beginningof
ead frame. The remainingtime in the frame, equal to
Tt — Tse is dedicatedo transmissionf the presenceof PU
is excluded.

The frame duration T; is also used as the referencepe-
riod for updatingthe nodespositionsand detemining the
newv values for shadaving. Note that a smaller update
period could easiyy be adopted,but this would hase no
impact on sensingperformance,as sensingis also per
formedwith period T; andnetwork wide syndironizationis
assumed.

5. Mobility-Aware Correlation-Based
Spectum Sensing

The proposedsensingschemeorganizesnetwork operation
in two states: a training state, usedfor nodegroupingand
selectionandanactivity state,during which nodesselected
in the training state perform sensing,and all nodestrans-
mit data padkets wheneer the network sensingdecision
excludesthe presencef the PU.

While in training state ead node takes M signal sam-
plesduring the sensingphasewith a samplingpetiod ts =

Tse=M secondsThe samplesarecomparedvith the sensing
threshold,with M decisionstaken at ead sensingnode.
Ead node sendsthe M decisionsto a fusion centre,that
usesthemto computethe correlation measure.The num-

ber of decisionaM shouldbe thuslarge enoughin orderto

allow for a reliable edimation of the correlation between
di erent nodes.
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As aresultof the selectionproceduredetailedlater in this
section,asetof active nodeds detemined,andthenetwork
switchesto the activity state,during which the active nodes
perform sensingand repot their decisionsto the fusion
centre,where a network decisionon the presenceof the
PU is taken.

The selectionprocedureusedduring the training phaseis
the following one.

Let's indicatewith S(k) the k-th decisionout of M taken
by thei-th node,andde ne it asfollows:

whenHj is declared

whenHj is declared’ (10)

I;

s={ _,;

whereH; andHg arethe hypothesesf the presencandthe

absenceof a PU, respectiely. Given the decisionstaken

by two SUs,i and j, the g ; cormelation measurefor the
two nodesis de ned as[12]:

&it11S(K) —S;(K)| |
2M ’

gj=1- (11)
where g ; € (0;1). If all decisionsfor the i-th and j-th
nodesareidentical g ; is equal to 1: in general,the higher
the numberof commondecisions the greaterthe value of
cormrelationmeasure.

After computingcorrelationmeasure®etweenall pairs of
nodes.the G matiix of sizeN x N is built:

1 Q2 i1 OGN
@1 B2 I BN

G=| . . . (12)
i1 2 N

It is assumedhat correlationcoe cients arereciprocal,so
Gis a symmetic matix. The diagonalelementsof matrix
are the auto-corelation coe cients. Therebre, G can be
represente@s uppertriangularmatix G (13):

0 g, 11 an

~ 0 0 i on

G=| . . . X (13)
o 0 ::: 0

After evaluatingthe correlation measuredor all possible
pairs of nodesthe grouping procedureis executed. First,
the value of a correlation thresholda is de ned. Next,
g, coe cients above a thresholdaredetemined. If more
thanoneg coe cient is higherthana, thentwo casesnay
occur:

o thepairsof correlatednodesaredisjoint. In this case
nodesare groupedby correlatedpairs;

e onenodeis correlatedwith morethanonenode. In
this casethree or more nodesare groupedtogether
only if all mutual correlation measuresare larger
than a. Nodesthat do not meetthis condition are
not includedin the group.
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The procedureis performed repeatedi until there are no
further nodesthat canbe groupedtogether

Let's considera simple example of a network consiging

of threenodes: A, B andC. The correlation coe cients

andcorrelationthresholdaregivenasfollows: g4 p = 0:96,

Qic =097 and ggc = 0:94, a = 0:95. At rst nodesA
andB aregrouped(g p > a), thennodeC becomesa can-
didateto join group. Although correlationbetweenA and
C is su cientl y high, the nodeC is not allowedto join the
group dueto a correlationwith nodeB belaw the required
threshold.As aresult,a group including nodesA andB is

formed, while nodeC remainsungrouped.

Whenthe groupingprocedurds complete somegroupsare
formedwhile the reg of nodesremainuncorrelated. Note
that the above algoiithm, rst descibedin [12], doesnot
require a predetemined numberof nodesand groupsto

be selectedas an input parameter The output numberof

groupsand the total numberof selectednodesdependon
the cormrelationenvironment.

Following the division of nodesinto groups,a groupleader
for eat groupis selectecaccordingto the LeaderSuitabil-
ity (LS) parameterde ned asfollows for the geneic group
memberi:

Vi Vmin

LS = c1Py,; + coe%i Vmax; (14)

wherec; andc, areweightcoe cients thatcanbe usedto
adjug the relative importanceof the two terms that form
theLS parameterThe rst term is the detectionprobability
of nodei, while the secondterm modelsthe gtability of
the node,de ned asits ability to stay aslong as possible
at a given location. The gtability coe cient is equal to 1
whenv; is equal to minimal velocity andO if v; = Vpax. The
behaior of the gability parameteis presentedn Fig. 1 for
Vimin = 1 M/S, Vmax=5 m/s.

1.0
09r
0.8
0.7r1
0.6
05¢
047
037
0.2¢
0.1y

0

Leader Suitability speed component

1 15 2 25 3 35 4 45 5
Speed [m/s]

Fig. 1. Behavior of the term relatedto nodevelocity usedin the
LeaderSuitability formula.

The goal of the proposedmetiic is to ensurethat selected
group leadersare able to guaranteegood sensingpeifor-
mancenot only at presenttime, but also in foreseeable
future, thanksto their low mobility.
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As a result of the selectionprocedure,the set of active
nodesallowed to patticipatein sensingis detemined,and
is composedy onegroup leaderfrom every group andall
the uncorelatednodes. The network switchesthento the
activity state for a predetemined amountof time, before
switching bad to the training state for updatingthe set of
active nodes.

6. SimulationResults

The performanceof the mobility-aware correlation-based
cooperatie sensingschemeintroducedin Section5 has
beeninvegigatedby meanf computersimulationscaried
out in the Matlab ervironment.

In the simulationsa squareareaof 200 m sidewasdivided
into 16 pixels of dgorr = 50 m side [9] and N =100 sec-
ondar nodeswererandomy distributedin the area. The
sameareawas coveredby the transmissionof a PU. The
PU signal was characteized by a carier frequency of
300 MHz, transmit power of 1 W, and distanceto SUs
in therange 1.41{1.86km. In orderto obsewe the bene t
of the grouping algoiithm, it was assumedhat the PU is
always present. A completelist of simulationparameters
and correspondingvaluesis presentedn Table 1.

Tablel
Simulationparameters
Parameter] Desciption | Value |

R Area Side 200m

q Numberof pixel squares 16

N Numberof nodes 100

fe Carrier frequency 300 MHz
Tie Sensingphaseduration 0.1s

Ty Frameduration 1ls

ts Sampletime 0.1ms

M| Nioreratonapproimaton 1000
SNR Averagd signal-to-noisaatio 2dB
Ssu Noise power at SU 3.0le B w
Ppy PU Signal Power 1w

d Distanceto Primary User 1.41{1.86km
deorr Decorelationdistance 50m

Or Global probability of falsealam 0.095

P; Local probability of falsealam 0.001

g Direction of movementof nodes| 0{2p rad
Viin Minimal velocity of nodes 1m/s
Vmax Maximal velocity of nodes 5-50m/s

I Numberof iterations 20000

Ss Shadaving varance 4.6dB

Df Dopplershift 3{150 Hz

n Periodic selectiontime 130r18s

a Minimal correlationcoe cient 0.95

Accordingto Ofcom rules the sensingshouldbe executed
at leag once a secondand occupy no more than 10%
of the total frame length [31]. Thus, in the simulations
aframeof durationT; = 1 swasdividedin Tee=0:1 s and
Ts —Tse= 0:9 s. During the sensingpart every node col-
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lectedM = 1000samplesgcorespondingo a sampletime

equal to 0:1 ms. The decisionswere generatedby com-

paring the power of eah sampleto a congant sensing
threshold.

Sud decisionswerethen provided as an input to the CSS
algoiithm for group formation and leader selection. As

mentionedin Section5, ary fusion rule could be adopted
to take the network decision; in the performanceeval-

uation presentedin this sectionan OR fusion rule was
adopted.

The CFAR requirementwas adoptedin the system, with

a global probability of falsealam equal to 0.095,imply-

ing thus local probabilitiesof falsealam equal to 0.001,
assuminghat all nodespatticipate in the sensingprocess.
Identical P andnoisepower at SUsimply, asa result,con-
stant sensingthresholdin every node(seeEq. 6).

All of the simulationswere doneunderthe assumptiorof

an average SNR betweenthe PU signalreceived at an SU

and the noise at the sameSU equal to 2 dB. The results
were averaged over 20,000iterations,andin ead iteration
the stateof the sysemwasrecordedevery secondora70s

obsewing time.

As already pointed out, mobility is expectedto play an
importantrole in sensingperformance.As a consegence
all simulationswere performedin mobility presence.
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Fig. 2. Exemplay state of the system after node selectionpro-
cedure.

An exampleof the state of the system after nodegrouping
and group leadersselectionis presentedn Fig. 2 (node
velocitiesin the range 1{20 m/s). In the gure dierent
marlers correspondto di erent groups,while lled mark
ersidentify the leaderof the correspondinggroup. It shawvs
thatfrom every group, only onenodeis selectedasa group
leaderexcept for a group marked by circles. Theseare
uncorelatednodes{ the nodeswhich are not correlated
enoughto join anothergroup. Therebre, all of thesenodes
are allowed to vote. In the situation presentedn Fig. 2,
11 nodesout of 100 are selectedto vote: 6 uncorelated
nodesand5 group leaders.In general,it canbe obsewed
that in the low-SNRscenaio, the received power is of-
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ten below the sensingthreshold,dueto strong shadaving

and/or fading. Thus, in sud scenalo mary nodeswith

badchannelconditionstake the decisionthatthe PU is not

present.As aresult,thesenodesareassociatedo the same,
large, group. Therebre, only a few groupsare eventualy

formed. This e ect may prove a signi cant advantag of

correlation-basedensingvhen AND or mgority rulesare
adoptedasit signi cantly reducegheimpactof individual

misseddetectionsby groupingall nodeslikely to generate
sut misseddetectionsin a single group. This resultwas
not obsewed in previous works on correlation-basedens-
ing, mod probaby dueto the ladk of detailedmodelingfor

channelcorrelation.

1 _______________________________________ oo |
7777777 all nodes
0.9998 r ideal selection |
0.9996
e

0.9994
09992 “/\WWVV\W\A/\
0.999

0 10 20 30 40 50 60 70
Time [s]

Fig. 3. Q4 for N nodesandselectedone.

Resultsalso highlightedthat the numberof selectechodes
in uencesthe valueof Qq. In general,the lower the num-
ber of selectednodes,the smaller Qq, with actual value
dependingon averag SNR, as expectedfrom the adoption
of an OR decisionrule. Figure 3 shaws the lossin global
probability of detectionQq dueto thereductionof thenum-
ber of group leaders. The uppercurve is the Qg whenall
nodesin the system are allowed to sendtheir decisionsto
fusion centre. The secondcase,referred to asoptimal se-
lection, correspondgo executingthe groupingprocedureat
the beginningof eat sensingphase,so at every second.
The Qq for all nodesis equal to 1, while for the optimally
selectedset of nodesit is around0.9992. So, the smaller
numberselectionof nodesintroducesa penaltyin terms of
the global detectionprobability slight reduction,mainly as
a selectedusionrule result. On the otherhand,the global
probability of false alarm was also signi cantly reduced,
which is a strong advantag from the point of seconday
network view. In fact, as underthe CFAR requirement
the local probability of falsealam for every nodeis kept
congant, the global probability of falsealarm dependson
the actualnumberof nodestaking part in decisionmaking
process. Figure 4 shavs the relation between Q; and the
numberof active nodes.One canseethat e.g. selectionof
10 out of 100nodedowersthe Qf from 0.095t0 0.01. This
implies that for the SNR usedin experiments,the proper

Y

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

nodegroupingcausedarey visible fall of Qg4 andsensible
fall of Q.

0.10
0.09 1
0.08 1
0.07 ¢
0.06 ¢
& 0.05¢
0.04 ¢
0.03 1
0.02 ¢
0.01¢

0 20 40 60 80 100
Number of selected nodes

Fig. 4. Oy in the function of numberof selectechodes.

The above resultsprove that correlation-basedodegroup-
ing canimprove performanceunderrealidic channelcon-
ditions and go beyond the resultsin [12] since,asalready
discussedn Section3, in thatwork peformanceevaluation
of the correlationbasedsolutionwaslimited to a scenaio
with randomy generatedocal detectionprobabilitieswith
no connectionto relative positionsand channelcorrelation
responsebetweenseconday nodes.

The analsis focusednext on the impactof the new leader
selectionmetiic. Threestrategiesfor the group leaderse-
lectionwereinvegigated,correspondingo threecoe cient
setsfor themetiic. The rst strategyselectedhe nodewith
the highes local probability of detectionto actasa group
leader(correspondingto weight coe cients for Eq. (14):
c1 =1, ¢ =0), asproposedn [12], referred to in the fol-
lowing as maxP; strategy The secondstrategy aimedto
selectthe groupleaderon the basisof boththelocal Py and
the gability coe cient (c; = 0:5, ¢, = 0:5), andis referred
to asthe mixedstrategy Finally, thethird strategy max ST,
only rewardsstability (c; =0, c; = 1).

The resultsfor maxP;, maxST and mixed strategiesare
shawvn in Figures5, 6 and 7, respectiely. In every gure
onecan nd threeplots: thetop curve is the optimal selec-
tion updatestrategy previously de ned; the bottom curve
correspondgo an updatestrategynamedstarting selection
in which the groupingand selectionprocedures executed
only once,in the rst secondof simulation. Finally, the
middle plot correspondsto the periodic selectionupdate
srategy in which groupingis caried out every n seconds
wheren is selectedso to keepthe 0.95 threshold.

One can seethat when adoptingthe optimal selectionup-
date strategy the beg resultis guaranteedy the max Py,
grategy In the mixed strategy Qq value is slightly lower
while the max ST drategy leadsto the word result (see
Table 2). The optimal selection values (Table 2) are
mathedexactly by the starting selectiorat the beginningof
ead simulation,andby the peiiodic selectionimmediatey
after eat update.
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Fig. 5. Q4 vs.time for max P; strategy n = 13 s.
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Fig. 6. Qg vs.time for max ST strategyn=13 s.
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Fig. 7. Qg vs.time for mixed strategy n = 18 s.

Maximum Qg valuesare doubtlessrelevant for evaluating
the performanceof grouping and selectionalgorithms, but
the dability of received measuress important as well.

Figure 8 presentsresultsfor the starting selectionupdate
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Table2
Qq valuesfor optimal selection
Leaderselectionmethod | Qq value
max P, 0.9992
mixed 0.9975
max ST 0.9925

srategyfor the threeleaderselectionstrategiesintroduced
abose. One can seethat in the maxP; strategy which

guaranteeshe highes Qg value for optimal selection,the
Qq valuedecreasesguickly in time, while for the stability-

involved strategieghe slopeis signi cantly lesssteep. The
leag steepslopeandthe highes valuesof Qq aftertwo sec-
ondswereobtainedfor the strategyinvolving both stability

and Py in the selectionof the group leader

0.975-

0.95¢

Qq

0.925-

0.9

0 10 20 30 40 50 60 70
Time [s]

Fig. 8. Q4 for starting selectionfor teminal velocitiesfrom 1 to
5 m/s.

Figure 8 shaws that the global detectionprobability might
be acceptablenot only immediatey after the leaderselec-
tion, but also sometime after the grouping and selection
procedure.Sincegroupingandleaderselectionrequire sig-
ni cant informationexchangsbetweennodesandthusin-
troducesigni cant overheadn the network, onemight want
to perform sud procedureas seldom as possible while
guaranteeinghe desireddetectionprobability.

The bene cial e ect of taking into accountstability in
group leaderselectioncan be obsewed by compaing the
periodic selectioncurvesin Figs. 5, 6 and 7, that shav
resultsassuminga minimum acceptableQq equal to 0.95.
Onecanin fact obsere that the periodic updatetime dif-
fersin the three caseswith the mixed strategy requiring
an updateonly every n= 18 s, while the other drategies
require an updateat mog every n= 13 s. The combina-
tion of nodés Py and stability introducedin the proposed
leaderselectionstrategyguaranteeshus an increaseof the
minimum updatetime from 13 to 18 s correspondingto
38% gain. The price paid to get sud an improvementis
a slightly lower Qg4 value in the very rst secondsafter
ead selectionprocedure.Although further sudiesare re-
quiredto quantify the overallimpactof thetwo phenomena
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on overall pefformancein the seconday network (e.g.in
terms of throughput),the resultsstrongly sugged that the
proposedstrategymay pravide a signi cant advantagg.
The trend of Qg as a function of time strongly depends
on the mobility of SUs. In Fig. 9 one canobsewke results
for nodesvelocitiesin the range of 1{20 m/s. The results
in Figs. 8 and 9 shav that the oor value in the start-
ing selectionupdatestrategyis signi cantly higherin the
Vmax = 20 m/s case.Min and Shinin [9] pointedout that
the sensingsctedulinggain risespropottionally as nodes
velocity increasesOnecould thuspredictthat wider range
of nodesvelocities lowers correlation between nodesand
thusimprovesglobal sensingresults.

0 10 20 30 40 50 60 70
Time [s]

Fig. 9. Q4 for starting selectionfor teminal velocitiesfrom 1 to
20 m/s.

1
0.975¢
0.95+
0.925¢
—e—maxky
09r —s—mixed
—=—maxST|
0 10 20 30 40 50

Velocity [m/s]

Fig. 10. Floor valueof Q4 vs. maximumnodevelocity for three
leaderselectiongtrategies.

In orderto verify this assumptionthe oor valueof global
detectionprobability was evaluatedas a SU maximumve-
locity vmax function, with minimum velocity vy, set at
1 m/s (Fig. 10). One can seethat the higher the nodeés
maximum velocity, the higher oor value of Qq. This is
deteminedby correlationbetweenthe sensorsin low-ve-
locity scenaios, decisionsf nodesarehighly correlatedso
thereare a few large nodesgroups. Therebre, only a few
nodesare selectedand allowed to vote. In a high-velocity
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Fig. 11. Numberof active nodesvs. maximumnodevelocity.
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Fig. 12. Numberof sleepingnodesvs. maximumnodevelocity.

scenaio the comrelationbetweennodes$ decisionsis small.

As a result,thereare more nodesgroupsand more uncor

relatednodes. The higherthe numberof active nodesand
the higher the average velocity, the higher the probability
thatoneor a few nodesexpetiencereliable channelcondi-

tions. This is con rmedby Fig. 11, shawving the number
of active nodes: the higherthe nodesmobility, the higher
active nodesnumber Moreover, the active nodeshigher
numberprovide lower overheadreduction. In Fig. 12 one
can obsewe the percentag of sleepingnodeswhich were
not selectedby the procedure.Thesenodesmay sleepand

thuslower the overheadnformationexchange aswell asre-

duceenegy consumption.For high-corelatedscenaio the

reductionin the numberof updatesandthe corresponding
overheads the mog signi cant. Evenin thelow-correlated
scenaio, the reductionof active nodesnumberis however

till prominent(75% for vimax = 50 m/s) thusjustifying the

adoptionof a groupingandselectionprocedureavenat rel-

atively high speeds.

7. Conclusionand Future Work

In this work a novel correlation-basedode grouping and
selectionalgoiithms hasbeenproposedthat takesinto ac-
countboth sensingperformanceandmobility of seconday
nodesby introducing a leaderselectionmetiic that com-
binesnodés Py andits stability. The performanceof the
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proposedalgorithm was evaluatedand comparedwith pre-
vious work by computersimulations.
Simulationresultsshav that by including stability in the
group leader selection criteria cormelation-basedsensing
can operatefor longer time periods with acceptableper
formancebefore an updateis needed. In patticular, the
proposedsdhemeled to a 38% decreasen the numberof
updateswvhile guaranteeing network detectionprobability
above the required 0.95 threshold,at the price of a slight
reductionin the maximumvalue of the sameprobability.
It was also proven that the proposedselectionprocedure
guaranteeshe involvementof only 9% vs. 25% of nodes
in high vs. low-correlatedscenaio, respectiely, acieving
in both casesa strong overheadreductionand enegy con-
sumptionby allowing mog of the nodesto entera power
savzing mode.

The proposedlgoiithm requirestheavailability of informa-
tion aboutthe nodesvelocities. It shouldbe notedhowever
that this information can be derived by meansof outdoor
(GPS)and indoor positioning systems basedon technolo-
gieslike Wi-Fi or RFID. Furthemore, the algoiithm can
equally operateon relative compaison betweenthe nodes
mobility, ratherthan on their absolutespeed. This rela-
tive informationcanbe obtainedby monitoting the rate of
topologicalchang obsewed by a node(e.g. average num-
ber of neighborsvaried per second).One could thusargue
that this assumptioris overall more realigic thanthe one
of knowing exactly the local detectionprobability of ead
node,sharedby the algorithm proposedn this work with
mog of the solutionsfor cooperatie spectum sensingpre-
viously proposedn the literature.

Future avenuesfor further researb include the detemina-
tion of the optimum balancebetweenthe nodes detection
probability and stability so to maximizethe global detec-
tion probability and at the sametime maximize the inter
val betweentwo grouping procedureupdates.In addition,
the proposedschemeis cumently being implementedin
a network simulatorto betterdetemineits impacton both
primary receiversandseconday network throughput.
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