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Abstract—Cooperative spectrum sensing has been proposed

as a solution to increase the sensing function accuracy in cog-

nitive radio networks, but the research has, so far, mainly

focused on static scenarios, all but neglecting the impact of

mobility on spectrum sensing. In this work a novel coopera-

tive spectrum sensing scheme for mobile cognitive networks,

based on a correlation-based, mobility-aware node selection

algorithm is proposed. Correlation among sensing decisions

is used to divide nodes into groups, and mobility is taken into

account in the group leaders selection by means of a node

selection metric that considers both sensing performance and

mobility. Performance of the proposed algorithm is evalu-

ated by computer simulations taking into account mobility and

a detailed modeling of temporal and spatial correlation of fad-

ing and shadowing components in the channel path loss, going

way beyond the performance evaluation carried out in previ-

ous works on correlation-based cooperative sensing schemes.

Simulation results highlight that the proposed metric leads to

a significant increase of the update period required to main-

tain acceptable sensing performance, and correspondingly to

a strong reduction in the overhead caused by the grouping and

node selection procedure.

Keywords—cognitive radio, cooperative spectrum sensing, mo-

bility, node grouping, node selection.

1. Introduction

Cognitiveradiotechnologyhasbeenproposedasapotential
solution to increasee�ciency in spectrum utilization as it
enablesopportunistic temporarily unusedfrequencybands
accessoncethepresenceof thesocalledprimary user(PU)
is excluded.Spectrum sensingwasinitially adoptedasthe
solutionfor determining whethera bandis available. How-
ever, due to longstandingopenresearch issuesin the im-
plementationof reliablesensingsolutions,FCC suggested
to usedatabasesfor detectionof PUs presenceespecially
in the so-calledspectrum white spaces,whoseoccupancy
is relatively stable [1]. Research on spectrum sensingis
still highly encouragedby FCC itself, assensingcancom-
plementandextendthe informationprovided by databases
andguaranteereliableande�cient cognitive accessin all
situations.UndercurrentFCCrules,in fact,databaseswill
only store PUs' locations,thus not guaranteeinge�ective
secondary-to-secondary coexistence. In this context spec-

trum sensingcanprovideadditionalawarenessand,asa re-
sult, support theconstructionof dynamic,secondary-aware
radio environmentmaps.
Spectrum sensingcanhowever only be adoptedif reliable
informationcanbegathered.Several investigationspointed
out that sensingcarried out locally by single devices is
not accurateenoughfor safe coexistencebetweenprimary
and secondary users[2]. Thus, reliable spectrum sensing
requires cooperationbetweennodes. In a widely adopted
scenario, alsoconsideredin this work, every nodein a cog-
nitive network sensesthe spectrum, andsendsinformation
to the fusion centrewherea global decisionis taken. One
can �nd many paperstackling the problemof optimal de-
cision makingin a fusion centre[3]{[6 ].
In cooperativespectrumsensingthefusioncentrecombines
the decisionsfrom N secondary sensingusers(SUs). As-
suming the k-out-of-N rule the global falsealarm proba-
bility Qf andthe global probability of detectionQd canbe
obtainedasfollows [7]:

Qf =
N

∑
i= k

(
N
i

)
Pi

f (1−Pf)
N� i; (1)

Qd =
N

∑
i= k

(
N
i

)
Pi

d(1−Pd)
N� i; (2)

wherePf andPd arethe falsealarm anddetectionprobabil-
ity, respectively, averaged over the statistics of N nodes.
Equations(1) and(2) may simplify in thecaseof theAND-
rule, which is in fact the N-out-of-N rule, and in the case
of the OR-rule (known as 1-out-of-N rule). In the latter
casethe Eqs. (1) and(2) aresimpli�ed to:

Qf = 1−
N

∏
i= 1

(1−Pf); (3)

Qd = 1−
N

∏
i= 1

(1−Pd): (4)

UndertheConstantFalseAlarm Rate(CFAR) requirement
thedesiredQf is setfor thewholesecondary network. The
correspondingvalue of Pf,i, assumedidentical for every
node,canbe thusobtainedas:

Pf,i = 1− N
√

1−Qf for i = 1 : : : N : (5)
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This impliesan identicalsensingthresholde for every sen-
sor given by [8]:

e = [(Q-1(Pf,i)=
√

Ns)+1]s 2
SU; (6)

whereNs is thenumberof sensingsamplesper nodetaken
to decisionmaking, Q-1(·) is the inverseQ-function and
s 2

SU is the noisepower at SU.

Cooperative spectrum sensingrequiresexplicit information
exchangesbetweennodes.Minimizing the overheadintro-
ducedby such exchanges,soto guaranteeenergy e�ciency
andlow complexity, is animportantaspectto beconsidered
in thedesignof a cooperative spectrum sensingalgorithm.
To this aim, selectionof nodessubsetto take careof sens-
ing has beenproposed,in order to limit the numberof
nodesreporting their sensingresultsto the fusion centre.
This is typically achievedby groupingthenodesaccording
to a given criterion, and selectinga node in each group
as representative/leaderfor that group. The identi�cation
of criteria for nodegroupingandgroup leaderselectionis
thus a fundamentalstep in the de�nition of such sensing
algorithm. A detailedanalysis of the literature relatedto
node grouping for sensingpurposesis presentedin Sec-
tion 2. A solution that received signi�cant interest in the
last few yearsrelieson the measureof the correlationbe-
tweensensingmeasurementstakenby thenodes.Sincethis
is theapproach alsoconsideredin this work, previouswork
on this speci�c topic is discussedin Section3.
An aspectthatwasseldomconsideredin thede�nition and
performanceevaluationof cooperative sensingschemesis
mobility. There are in fact only a few paperstackling
the role and impact of mobility in cooperative spectrum
sensing. In [9], the authorspresenta theoreticalanalysis
con�r ming that node mobility increasesspatial diversity
and as a consequenceimproves the sensingperformance.
The resultspresentedin that work highlight the trade-o�
between the numberof sensorsand the numberof mea-
surementstaken by each sensor. The authorsin [10] base
their work on [9] but introducemoreaccurateassumptions
and provide more detailedresults. Moreover, the expres-
sion for the numberof measurementrequired for a given
velocity, detectionand falsealarm probability is derived.
The work in [11] comparesresultsobtainedon the basis
of the aforementionedworks andpresentsresultsobtained
by simulationundermorerealistic conditions,showing that
relaxation or removal of someof the assumptionstaken in
previous work hasa signi�cant inuence on performance.
However, theabove-mentionedworksfocusedon analyzing
the impactof mobility on network performanceratherthan
on proposinganapproach towardsthedesignof anoptimal
CSSschemein presenceof mobility.
In theabovecontext, thiswork proposesacooperativesens-
ing schemeaimingat groupingnodesandselectinga leader
for each group to be involved in the sensingprocess.The
schemerelieson themeasureof correlationin sensingdeci-
sionsfor nodegrouping,andadoptsa mobility andsensing
aware metric for the group leadersselection. The con-
cept of node grouping basedon correlation is leveraged

from [12], and combinedwith a novel metric for group
leaderselectionthattakesinto accountmobility andsensing
performance,soto guaranteeadequatesensingperformance
for extendedperiods of times. The proposedapproach is
thencomparedwith previous solutionsby computersimu-
lations,implementingaccuratemodelsfor themobile radio
channel,taking into accountspatialand temporalcorrela-
tion for both fadingandshadowing components.
The original contributions introducedin this work can be
thussummarized asfollows:

• anovel solutionfor cooperativespectrumsensingtak-
ing into accountsensingperformanceandmobility;

• an extensive performanceevaluationof correlation-
basedcooperative spectrum sensingunder realistic
conditionsthat foreseeaccuratemodelingfor spatial
and temporalcorrelation of channelparametersand
take into accountthe impact of such parameterson
sensingperformanceof nodes;

• the analysis of the nodemobility impacton correla-
tion-basedcooperative spectrum sensing.

The impactof channelcorrelationandmobility, in partic-
ular, are aspectsall but neglectedin previous works on
correlation-basedcooperative spectrum sensing[12].
The paper is organizedas follows. In Section2, previ-
ous work on node grouping and selectionalgorithms in
cooperative spectrum sensingis reviewed. In Section3,
correlation-basedselectionschemesareanalyzedin detail.
In Section4, the consideredsystem model is described,
while in Section5 theproposedcooperativespectrumsens-
ing scheme,basedon a novel mobility-awareleaderselec-
tion metric is presented.Simulationresultsfor theanalysis
of the proposedapproach and its comparison with previ-
ouswork arepresentedin Section6, while Section7 draws
conclusionsandidenti�es future research lines.

2. NodeGroupingin Cooperative
Spectrum Sensing

A large numberof cooperatingSUsguaranteeshigh global
probability PUs detection. However, proper independent
nodesselectionfor cooperationcanimprove therobustness
of cooperative sensing[13], [14]. Moreover, global false
alarm probability may be signi�cantly reduced[8]. Node
selectionreducesalso the overheadrelatedto unnecessary
sensinginformation transmissionas well as provides sig-
ni�cant energy savings.
Several di�erent approaches to node selectionhave been
proposedin the literature,and are briey reviewed in the
following.

2.1. Best-SNRSelectionAlgorithm

Best-SNR selectionalgorithms are basedon selectingthe
nodeswith the highest signal-to-noiseratio for coopera-
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tion [8]. Under the Constant DetectionRate (CDR) re-
quirement,every nodemaintainsa constant local detection
probabilityby adaptingthedetectionthresholdon thebasis
of expectedSNR. Hence,the false alarm probability de-
pendson theexpectedSNR: thehighertheSNR,the lower
falsealarm probability. Therefore,selectionof the cooper-
ation nodeswith the highest SNR lowers the global false
alarm probability in the network (Qf).
UnderCFAR requirement,thenodeswith thehighest SNR
have the highest detectionprobability. Thus,the SUswith
the highest SNR shouldalways be chosenfor cooperation.
However, this requires the nodesto be awareof their own
SNR and deliver it to the fusion centre,while the fusion
centrehasto receive the informationfrom every SU in the
network. Variable channelconditionsinduceSNR varia-
tions, that must be dealt with, for examplewith periodic
updatesof the estimatesof the SNR for each node.
The best-SNR selectionapproach hasbeeninvestigatedby
Peh and Liang in [8]. The authorsproved that through
selectionof a reducednumber of nodessigni�cant per-
formanceimprovementcan be obtained. For example,by
usingonly 19 out of 200nodesfor cooperative sensingthe
Qf decreasefrom 6.02%to 0.06%undertheCDR require-
mentwith OR-rule aswell asan Qd increasefrom 92.04%
to 99.88%underthe CFAR requirementwith AND-rule is
achieved.
Another algorithm basedon the best-SNR selectionhas
beendescribed in [15]. In this work the secondary user
with the highest SNR is chosenin the �rs t iteration. Next,
every other node comparesits link quality to the fusion
centrewith its link quality to the formerly selectednode
and from the formerly selectednodeto the fusion centre.
If a nodedeterminesthatits own link is lessreliable,thenit
joins the best-SNR nodegroup. Otherwise, the next best-
SNR node amongungroupednodesis selectedand then
theprocedureof comparing links andgroupingis repeated
until all of the nodesaregrouped.
An interesting algorithm relying on best-SNRselectionhas
beenproposedin [16]. In this work nodesare classi�ed
either as leadersor followersbasedon the received SNR.
Leading nodeshave good detectionperformanceand are
allowed to sensethe PU signalandbroadcast their sensing
information.Following nodesareconsideredunreliabledue
to low SNR, so they do not broadcast their decisions,but
rather wait for broadcasted packets from leaders. Thus,
only the reliable information is broadcasted. In addition,
the information sentby the leadersis rather limited, only
consisting in the PU presenceinformation. As a result,
theapproach proposedin [16] leadsto low overheadinfor-
mation. The identi�cation of nodeswith highest SNR is
however challenging,asit must rely on thepresenceof the
PU during training/measurementperiods.

2.2. BestDetectionPerformanceSelection

Algorithmsbelongingto this family rely on nodeswith the
highest probability of detectionbeingselected[17]. How-
ever, the correct identi�cation of such nodesis an open

issue,as algorithms basedon best detectionperformance
selectionare typically analyzedunderthe assumptionthat
the PU is always presentand thus can identify the best
nodesas thosethat obtain the highest numberof the \PU
present"positive decisions.Thesealgorithms,similarly to
thebest-SNRonesseenbefore,arethusonly easily applica-
ble whenthereareknown periods wherethe PU is always
present,allowing to evaluatetheprobabilityof detectionof
the nodes.

2.3. Voting Schemes

The �rs t representative of the voting schemesclassis the
so-calledCon�dence Voting [18], in which nodesbuild
reliability-relatedmeasures.The ideais to limit unreliable
decisiontransmissions.Every nodeis obligedto computea
con�dencemetric. In the hard decisionscenario the local
and global decisionsare collated - in the caseof coinci-
dencethe con�dence metric is incremented,otherwise it
is decremented.After the training period, in which the
metrics arecomputed,only thenodeswith thehighest con-
�dence metrics areallowed to report their decisionsto the
fusion centre.
The Collision Detectionscheme[19] is basedon nodese-
lection with thehighest correctnessmeasure.The measure
noti�es the numberof node's correct decisionswhen the
global false decision is that the PU is not present. The
nodeswith thehighest correctnessareselectedandinvolved
in cooperative sensing.
The schemesbasedon voting have the advantage of being
applicablein scenarios wherethereareno periodsin which
thepresenceof thePUis known in advance,but they arenot
without drawbacks. As they rely on themajority opinion,if
most of the secondary usersfacesbadchannelconditions,
thenmorecon�dencegoesto unreliablenodes.As a result,
the decisionobtainedin con�dence voting may be worse
thanin a traditionalscheme.As a sidecomment,thevoting
schemesarenot robust enoughin thecaseof maliciousSU.

2.4. Other Approaches

A few approachesnot falling in the abovementionedfam-
ilies have beenproposedin the literature and are briey
discussedbelow.
A similarity-basedalgorithm has beendescribed in [20].
In this case,thesimilarity measuresfor pairsof nodeshave
to becomputed.Thesimilarity measureindicateshow well
nodek canserve asthereporting nodefor nodei [20]. The
similarity is determinedon the two metrics basis: respon-
sibility and availability. The responsibilityis derived for
checking how well nodek canbea reporting nodefor node
i in comparison with other nodes. The availability coe�-
cient measuresappropriatenessof being a reporting node
to exclude situationswhen only a small numberof nodes
is grouped.
Selenet al. in [21] proposeda solution for the problem
of nodeselectionwhich doesnot involve nodes' SNRsnor
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their performanceknowledge. The only required informa-
tion is the distancefrom coordinatingsensorto the other
nodes. The selectionis in fact basedon such radius in-
formationexchanged betweennodes. The algorithm �nds
k sensorswithin the radiusseparationunderthe constraint
not to exceedthe desiredcorrelation probability between
selectednodes.
The sensorsmay be selectedalso according to power
consumptionconstraints. The maximum power scheme
choosesthesetof nodeswith the least power consumption
in orderto guaranteeminimal power usage [22]. Themax-
imum lif etimeschemechoosesa setwhich hasthe longest
minimum lif etime. In this algorithm a tiebreaker is also
neededto switch betweensetsof nodes[22].
Najimi et al. in the work [23] proposea schemethat com-
binesenergy e�ciency and sensingperformancein node
selection. The schemeintroducesa cost function that fa-
vors nodeswith lowest sensingand decision-transmission
energy usage amongthosesatisfyingthe quality of detec-
tion constraint. Furthermore,energy e�ciency is increased
by introducingdecisionnodes,each acting as collector of
sensingresultsfrom a set of selectednodes,determining
a common decisionand sendingit to the fusion centre.
The schemerequires however full knowledge aboutnodes
signal-to-noiseratiosanddistancesbetweeneach nodeand
fusion centrein order to operate,leading to a signi�cant
control overhead.

2.5. Correlation-BasedSelection

Finally, a few works investigatedcorrelation-basedselec-
tion schemes.Theseare basedonly on node decisions,
which are used for �nding correlations between nodes.
This approach relieson the assumptionthat �nding corre-
lationsbetweensensingnodesandselectingonly uncorre-
latedonesshouldresultin goodsensingperformancewhile
minimizing transmissionoverheadassociatedwith report-
ing the sensingresultsto the fusion centre. Sincethe al-
gorithm proposedin this work falls into this category, cor-
relation-basednode selectionalgorithms are analyzed in
Section3.

3. Correlation-BasedNodeSelection

Correlation-basednodeselectionhasbeenintroducedin the
aforementionedwork [21], wherea network consisting of
N nodesis considered.All nodesaregroupedin an active
setat thealgorithm beginning,while afterselectiononly X
nodesmay remainin theactive setwhile the rest is moved
to the passive set, that includesall nodesthat are not al-
lowed to vote. In order to make a proper selection,the
correlationmeasureis computedfor pairs of nodesin the
network. Then,thenodewith thehighest summedcorrela-
tion with the remainingsensorsis removedfrom theactive
setandmovedto passive set. Thecorrelationmeasureused
in [21] is basedon the nodespositionsandassociatedpo-

sitioning uncertainty. An exampleof correlation measure
is the following correlationfunction (7):

R(d) = e� ad; (7)

where a is a decay constant related to the environment
andd is the distancebetweensensors.
A distributedcorrelation-basedselectionapproach waspre-
sentedin [24], wherea nodeis randomly selectedto start
the procedureby broadcasting sensinginformation to the
other nodes,in the form of the received signal during the
last sensingphase.The remainingnodeslisten to this in-
formationandestimate their correlationcoe�cients. Each
nodecomparesits coe�cient with a correlationthreshold,
andif it is above the thresholdthe nodedoesnot take part
furtherin theprocedure.Nodesthathaveacorrelationcoef-
�cient below thresholdrandomly selecta delay andtheone
that picked the shortest delay transmitsits received signal,
starting the next iterationof the procedure.The procedure
completeswhen thereis no remaininguncorrelatednode.
Sinceaspart of theprocedureall nodessharetheir received
signal, when it is completedeach nodeis capableof tak-
ing the samesensingdecisionaccordingto a soft fusion
of the received signals.The work is ratherinteresting, but
the role of noisein the resultsof the correlationprocedure
is not completely addressedin the work, as the presence
of a denoiseris assumedbut its impact is not thoroughly
described in the paper.
Prataset al. in thework [25] proposedtheAdaptiveCount-
ing Rule. In the solution cooperative network of n SUs
is considered. The adaptive rule is adoptedin the hard-
decisionfusion scheme. It optimizesthe minimal number
of SUs declaring the presenceof primary signal derived
ask. It wasshown that optimal valueof k dependson the
amountof correlationexperiencedby nodesaswell asthe
numberof detectorsin the setandtheir performance.The
authorsproposedalso continuousmechanismof selection
optimal k value.
Another correlation-basedapproach was described in the
paperwritten by Y. Sun et al. [12]. In this approach the
correlation measureis computedbasedon the nodedeci-
sionsonly. Thus,no additionalinformation,such asposi-
tion of nodes,is needed.Correlation-basednodeselection
presentedin [12] is basedon similarity in decisionmaking.
The performanceevaluation that supports the approach
in [12] is however quite preliminary, as it relies on sev-
eral simplifying assumptions.For example,authorsstate
that sensinginformationwas\generatedrandomly accord-
ing to the probability of correct detection between 70
and90%" [12], implying that the radiochannelmodelwas
not taken into accountin the results.The authorsalsoas-
sumethat by putting the value of correlation thresholda
to 0.96 the nodescanbe divided into 10 groups. This as-
sumptionwould not hold in generalin the real world, as
the selectednumberof nodesresultingfrom the approach
in [12] constantly changesanddependson several param-
eters,e.g.on actualpropagation conditionsor nodesposi-
tions. Finally, the simulationresultsin [12] wereobtained
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in a low-correlationscenario for an average signal-to-noise
ratio equal to 10 dB, while one would reasonably expect
a CSSschemeto be tested in a low SNR regime,where
its improvementover local sensingis expectedto be most
relevant.
Despitethe lack of thoroughexperimentalveri�cation, the
approach proposedin [12] is appealing,sinceit inherently
takesinto accounttherole of spatialpositionsof nodesand
channelconditions in determining the best set of nodes.
A solution inspiredby this approach, but also taking into
accounttherole of mobility, is introducedin Section5, and
its performanceis evaluatedin Section6.

4. System Model

Themodeladoptedin this work foreseesN nodesrandomly
distributedin a squareareaof sideequal to R meters.Ev-
ery nodeis assumedto have the samedesiredprobability
of false alarm and therefore the samesensingthreshold
computedaccordingto Eq. (6).
Thegeneric nodemoveswith a randomly selecteddirection
of movementqi andvelocity vi. Anglesof movementand
velocitiesare uniformly distributed, with q taking values
between0 and 2p radians,and velocitiesv betweenvmin
and vmax m/s. Whenever a node hits the border of the
square areait bouncesback from it accordingto a total
reection model,while keepingthe samevelocity.
The following power attenuationmodel is assumedfor the
mobile radio channelbetweena mobile nodeand the Pri-
mary User:

channel|dB = pathloss|dB + f ading|dB +shadowing|dB:
(8)

The path loss dependson carrier frequency fc andon the
distanced between node and PU accordingto the well-
known Friis' formula. The carrier frequency is assumed
to be constant for all nodes,while the distancechangesin
time proportionally to the nodevelocity. However, it is as-
sumedthatduring thesensingphasethepathlossdoesnot
change dueto relatively small possiblevariation of nodes'
locations.
Fadingcoe�cients aremodelledaccordingto Rayleigh fad-
ing channel. Dopplershift is proportional to the nodeve-
locity and in the presentedmodel varies accordingto the
following equation:

Df = 3 ·vi: (9)

In the model every node experiencesindependentfading
channel (as suggested in [26]), resulting in uncorrelated
fadingbetweendi�erent nodes,but correlatedchannelco-
e�cients in time for a given node.
As regardsshadowing modelling,thedecorrelationdistance
dcorr has beenset accordingto Gudmundsonmodel [27]
andMin andShinwork [9]. Hence,thesquareareaof side
Rmeterswasdividedinto q smaller(pixel) squarescontain-
ing di�erent valuesfor shadowing. Thevaluesareconstant

in time for a givenlocationaccordingto [28], soduring the
observation time the shadowing valuefor every shadowing
centredoesnot change. The valuesare randomizedwith
thenormal distribution N ∼ (0;s s). However, onecan�nd
more sophisticatedshadowing models. Kasiri and Cai in
the work [29] appliedNeSh(Network Shadowing) model
taken from the work [30]. The modelallows to determine
correlationvaluesbetweenlinks of di�erent userswhile in
Gudmundsoncaseit is possibleonly for links comingfrom
one node. Sincehowever the scenario consideredin this
paperfocuseson correlationbetweenmeasurementsinvolv-
ing the sameprimary transmitter, the Gudmundsonmodel
wasdeemedsu�cient to the purposeof this work.
In the consideredsystem every nodetakes M sensingde-
cisionsandsendsthemto the fusion centre,underthe as-
sumptionthat radiocoverage betweenthenodesandfusion
centre is always guaranteed.One can reasonably expect
that mobility will also signi�cantly impact the topology
of the secondary network and thus the radio coverage be-
tweennodesand fusion centre. For the sake of simplicity
theanalysisof such impactis left for futurework, while in
thepresentpaperthe impactof mobility is restricted to the
sensingresults.
Nodesin the network sharea commontime reference,and
time is organizedin framesof duration Tf. The sensing
information is gatheredand exchanged during a sensing
phaseof durationTse that takes placeat the beginningof
each frame. The remaining time in the frame, equal to
Tf −Tse is dedicatedto transmissionif the presenceof PU
is excluded.
The frame duration Tf is also used as the referencepe-
riod for updatingthe nodespositionsand determining the
new values for shadowing. Note that a smaller update
period could easily be adopted,but this would have no
impact on sensingperformance,as sensingis also per-
formedwith period Tf andnetwork wide synchronizationis
assumed.

5. Mobility-AwareCorrelation-Based
Spectrum Sensing

The proposedsensingschemeorganizesnetwork operation
in two states:a training state,usedfor nodegroupingand
selection,andanactivity state,during which nodesselected
in the training state perform sensing,and all nodestrans-
mit data packets whenever the network sensingdecision
excludesthe presenceof the PU.
While in training state each node takes M signal sam-
plesduring the sensingphase,with a samplingperiod ts =
Tse=M seconds.Thesamplesarecomparedwith thesensing
threshold,with M decisionstaken at each sensingnode.
Each nodesendsthe M decisionsto a fusion centre,that
usesthem to computethe correlationmeasure.The num-
ber of decisionsM shouldbe thuslarge enoughin orderto
allow for a reliable estimation of the correlation between
di�erent nodes.
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As a resultof the selectionproceduredetailedlater in this
section,asetof activenodesis determined,andthenetwork
switchesto theactivity state,during which theactive nodes
perform sensingand report their decisionsto the fusion
centre,where a network decisionon the presenceof the
PU is taken.
The selectionprocedureusedduring the training phaseis
the following one.
Let's indicatewith Si(k) the k-th decisionout of M taken
by the i-th node,andde�ne it asfollows:

Si(k) =

{
1; whenH1 is declared

−1; whenH0 is declared
; (10)

whereH1 andH0 arethehypothesesof thepresenceandthe
absenceof a PU, respectively. Given the decisionstaken
by two SUs, i and j, the gi, j correlation measurefor the
two nodesis de�ned as[12]:

gi, j = 1− å M
k= 1 |Si(k)−Sj(k)|

2M
; (11)

where gi, j ∈ 〈0;1〉. If all decisionsfor the i-th and j-th
nodesareidenticalgi, j is equal to 1: in general,the higher
the numberof commondecisions,the greaterthe valueof
correlationmeasure.
After computingcorrelationmeasuresbetweenall pairsof
nodes,the G matrix of sizeN×N is built:

G=




g1,1 g1,2 : : : g1,N
g2,1 g2,2 : : : g2,N

...
...

...
...

gN,1 gN,2 : : : gN,N


 : (12)

It is assumedthatcorrelationcoe�cients arereciprocal,so
G is a symmetric matrix. The diagonalelementsof matrix
are the auto-correlation coe�cients. Therefore, G can be
representedasuppertriangularmatrix G̃ (13):

G̃=




0 g1,2 : : : g1,N
0 0 : : : g2,N
...

...
...

...
0 0 : : : 0


 : (13)

After evaluating the correlation measuresfor all possible
pairs of nodesthe grouping procedureis executed. First,
the value of a correlation thresholda is de�ned. Next,
gi, j coe�cients above a thresholdaredetermined. If more
thanoneg coe�cient is higherthana , thentwo casesmay
occur:

• thepairsof correlatednodesaredisjoint. In this case
nodesaregroupedby correlatedpairs;

• onenodeis correlatedwith more thanonenode. In
this casethreeor more nodesare groupedtogether
only if all mutual correlation measuresare larger
than a . Nodesthat do not meet this condition are
not includedin the group.

The procedureis performed repeatedly until there are no
further nodesthat canbe groupedtogether.
Let's considera simple example of a network consisting
of threenodes: A, B andC. The correlation coe�cients
andcorrelationthresholdaregivenasfollows: gA,B = 0:96,
gA,C = 0:97 and gB,C = 0:94, a = 0:95. At �rs t nodesA
andB aregrouped(gA,B > a ), thennodeC becomesa can-
didateto join group. Although correlationbetweenA and
C is su�cientl y high, the nodeC is not allowed to join the
group dueto a correlationwith nodeB below the required
threshold.As a result,a group including nodesA andB is
formed,while nodeC remainsungrouped.
Whenthegroupingprocedureis complete,somegroupsare
formedwhile the rest of nodesremainuncorrelated.Note
that the above algorithm, �rs t described in [12], doesnot
require a predetermined numberof nodesand groups to
be selectedas an input parameter. The output numberof
groupsand the total numberof selectednodesdependon
the correlationenvironment.
Following thedivision of nodesinto groups,a groupleader
for each groupis selectedaccordingto theLeaderSuitabil-
ity (LS) parameter, de�ned asfollows for thegeneric group
memberi:

LSi = c1Pd,i +c2e
vi � vmin
vi � vmax ; (14)

wherec1 andc2 areweightcoe�cients that canbe usedto
adjust the relative importanceof the two terms that form
theLS parameter. The�rs t term is thedetectionprobability
of node i, while the secondterm modelsthe stability of
the node,de�ned as its ability to stay as long as possible
at a given location. The stability coe�cient is equal to 1
whenvi is equal to minimal velocityand0 if vi = vmax. The
behavior of thestability parameteris presentedin Fig. 1 for
vmin = 1 m/s,vmax = 5 m/s.
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Fig. 1. Behavior of the term relatedto nodevelocity usedin the
LeaderSuitability formula.

The goal of the proposedmetric is to ensurethat selected
group leadersare able to guaranteegood sensingperfor-
mancenot only at presenttime, but also in foreseeable
future, thanksto their low mobility.
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As a result of the selectionprocedure,the set of active
nodesallowed to participate in sensingis determined,and
is composedby onegroup leaderfrom every groupandall
the uncorrelatednodes.The network switchesthen to the
activity state for a predetermined amountof time, before
switching back to the training state for updatingthe setof
active nodes.

6. SimulationResults
The performanceof the mobility-aware correlation-based
cooperative sensingscheme introducedin Section 5 has
beeninvestigatedby meansof computersimulationscarried
out in the Matlab environment.
In thesimulationsa squareareaof 200m sidewasdivided
into 16 pixels of dcorr = 50 m side [9] and N = 100 sec-
ondary nodeswere randomly distributed in the area. The
sameareawas coveredby the transmissionof a PU. The
PU signal was characterized by a carrier frequency of
300 MHz, transmit power of 1 W, and distance to SUs
in the range 1.41{1.86km. In order to observe the bene�t
of the grouping algorithm, it was assumedthat the PU is
always present. A completelist of simulationparameters
andcorrespondingvaluesis presentedin Table1.

Table1
Simulationparameters

Parameter Description Value

R Area Side 200 m
q Numberof pixel squares 16
N Numberof nodes 100
fc Carrier frequency 300 MHz

Tse Sensingphaseduration 0.1 s
Tf Frameduration 1 s
ts Sampletime 0.1 ms

M
Numberof samplesusedfor

1000correlationapproximation
SNR Averaged signal-to-noiseratio 2 dB
sSU Noisepower at SU 3.01e−13 W
PPU PU SignalPower 1 W
d Distanceto Primary User 1.41{1.86km

dcorr Decorrelationdistance 50 m
Qf Global probability of falsealarm 0.095
Pf Local probability of falsealarm 0.001
qi Direction of movementof nodes 0{2p rad

vmin Minimal velocity of nodes 1 m/s
vmax Maximal velocity of nodes 5-50 m/s

I Numberof iterations 20000
s s Shadowing variance 4.6 dB
Df Dopplershift 3{150 Hz
n Periodic selectiontime 13 or 18 s
a Minimal correlationcoe�cient 0.95

Accordingto Ofcom rules the sensingshouldbe executed
at least once a secondand occupy no more than 10%
of the total frame length [31]. Thus, in the simulations
a frameof durationTf = 1 s wasdivided in Tse= 0:1 s and
Tf −Tse= 0:9 s. During the sensingpart every nodecol-

lectedM = 1000samples,correspondingto a sampletime
equal to 0:1 ms. The decisionswere generatedby com-
paring the power of each sample to a constant sensing
threshold.
Such decisionswere thenprovided asan input to the CSS
algorithm for group formation and leader selection.As
mentionedin Section5, any fusion rule could be adopted
to take the network decision; in the performanceeval-
uation presentedin this section an OR fusion rule was
adopted.
The CFAR requirementwas adoptedin the system, with
a global probability of falsealarm equal to 0.095, imply-
ing thus local probabilitiesof falsealarm equal to 0.001,
assumingthat all nodesparticipate in the sensingprocess.
IdenticalPf andnoisepower at SUsimply, asa result,con-
stant sensingthresholdin every node(seeEq. 6).
All of the simulationsweredoneunderthe assumptionof
an average SNR betweenthe PU signal received at an SU
and the noiseat the sameSU equal to 2 dB. The results
wereaveraged over 20,000iterations,andin each iteration
thestateof thesystemwasrecordedevery secondfor a 70s
observing time.
As alreadypointed out, mobility is expectedto play an
important role in sensingperformance.As a consequence
all simulationswereperformedin mobility presence.
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Fig. 2. Exemplary stateof the system after nodeselectionpro-
cedure.

An exampleof the stateof the system after nodegrouping
and group leadersselectionis presentedin Fig. 2 (node
velocities in the range 1{20 m/s). In the �gure di�erent
markerscorrespondto di�erent groups,while �lled mark-
ersidentify theleaderof thecorrespondinggroup. It shows
that from every group,only onenodeis selectedasa group
leaderexcept for a group marked by circles. Theseare
uncorrelatednodes{ the nodeswhich are not correlated
enoughto join anothergroup. Therefore,all of thesenodes
are allowed to vote. In the situationpresentedin Fig. 2,
11 nodesout of 100 are selectedto vote: 6 uncorrelated
nodesand5 group leaders.In general,it canbe observed
that in the low-SNR-scenario, the received power is of-
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ten below the sensingthreshold,due to strong shadowing
and/or fading. Thus, in such scenario many nodeswith
badchannelconditionstake thedecisionthat thePU is not
present.As a result,thesenodesareassociatedto thesame,
large, group. Therefore, only a few groupsare eventually
formed. This e�ect may prove a signi�cant advantage of
correlation-basedsensingwhenAND or majority rulesare
adopted,asit signi�cantly reducesthe impactof individual
misseddetectionsby groupingall nodeslikely to generate
such misseddetectionsin a single group. This result was
not observed in previous works on correlation-basedsens-
ing, most probably dueto the lack of detailedmodelingfor
channelcorrelation.

1
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0.9996

0.9994
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0.999
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Time [s]

Q
d

all nodes

ideal selection

Fig. 3. Qd for N nodesandselectedone.

Resultsalsohighlightedthat the numberof selectednodes
inuences the valueof Qd. In general,the lower the num-
ber of selectednodes,the smaller Qd, with actual value
dependingon average SNR,asexpectedfrom theadoption
of an OR decisionrule. Figure 3 shows the loss in global
probabilityof detectionQd dueto thereductionof thenum-
ber of group leaders.The uppercurve is the Qd whenall
nodesin the system areallowed to sendtheir decisionsto
fusion centre. The secondcase,referred to asoptimal se-
lection, correspondsto executingthegroupingprocedureat
the beginningof each sensingphase,so at every second.
The Qd for all nodesis equal to 1, while for the optimally
selectedset of nodesit is around0.9992. So, the smaller
numberselectionof nodesintroducesa penaltyin termsof
the global detectionprobability slight reduction,mainly as
a selectedfusion rule result. On the otherhand,theglobal
probability of false alarm was also signi�cantly reduced,
which is a strong advantage from the point of secondary
network view. In fact, as under the CFAR requirement
the local probability of falsealarm for every nodeis kept
constant, the global probability of falsealarm dependson
the actualnumberof nodestaking part in decisionmaking
process.Figure 4 shows the relation betweenQf and the
numberof active nodes.Onecanseethat e.g.selectionof
10 out of 100nodeslowerstheQf from 0.095to 0.01. This
implies that for the SNR usedin experiments,the proper

nodegroupingcausesbarely visible fall of Qd andsensible
fall of Qf .
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Fig. 4. Qf in the function of numberof selectednodes.

The above resultsprove thatcorrelation-basednodegroup-
ing can improve performanceunderrealistic channelcon-
ditions andgo beyond the resultsin [12] since,asalready
discussedin Section3, in thatwork performanceevaluation
of the correlationbasedsolutionwaslimited to a scenario
with randomly generatedlocal detectionprobabilitieswith
no connectionto relative positionsandchannelcorrelation
responsesbetweensecondary nodes.
The analysis focusednext on the impactof the new leader
selectionmetric. Threestrategiesfor the group leaderse-
lectionwereinvestigated,correspondingto threecoe�cient
setsfor themetric. The�rs t strategyselectedthenodewith
the highest local probability of detectionto act asa group
leader(correspondingto weight coe�cients for Eq. (14):
c1 = 1, c2 = 0), asproposedin [12], referred to in the fol-
lowing as maxPd strategy. The secondstrategyaimed to
selectthegroupleaderon thebasisof boththelocal Pd and
the stability coe�cient (c1 = 0:5, c2 = 0:5), andis referred
to asthemixedstrategy. Finally, thethird strategy, maxST,
only rewardsstability (c1 = 0, c2 = 1).
The results for maxPd, maxST and mixed strategiesare
shown in Figures5, 6 and7, respectively. In every �gure
onecan�nd threeplots: thetop curve is theoptimal selec-
tion updatestrategypreviously de�ned; the bottom curve
correspondsto an updatestrategynamedstarting selection
in which the groupingandselectionprocedureis executed
only once, in the �rs t secondof simulation. Finally, the
middle plot correspondsto the periodic selectionupdate
strategy, in which grouping is carried out every n seconds
wheren is selectedso to keepthe 0.95 threshold.
One canseethat whenadoptingthe optimal selectionup-
date strategy, the best result is guaranteedby the maxPd
strategy. In the mixed strategyQd value is slightly lower
while the maxST strategy leads to the worst result (see
Table 2). The optimal selection values (Table 2) are
matchedexactly by thestarting selectionat thebeginningof
each simulation,andby theperiodic selectionimmediately
after each update.
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Fig. 5. Qd vs. time for maxPd strategy, n = 13 s.
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Fig. 7. Qd vs. time for mixed strategy, n = 18 s.

Maximum Qd valuesare doubtlessrelevant for evaluating
the performanceof groupingandselectionalgorithms,but
the stability of received measuresis important as well.
Figure 8 presentsresultsfor the starting selectionupdate

Table2
Qd valuesfor optimal selection

Leaderselectionmethod Qd value

maxPd 0.9992
mixed 0.9975

maxST 0.9925

strategyfor the threeleaderselectionstrategiesintroduced
above. One can see that in the maxPd strategy, which
guaranteesthe highest Qd value for optimal selection,the
Qd valuedecreasesquickly in time, while for the stability-
involvedstrategiestheslopeis signi�cantly lesssteep.The
least steepslopeandthehighest valuesof Qd after two sec-
ondswereobtainedfor thestrategyinvolving bothstability
andPd in the selectionof the group leader.

maxST
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Q
d

0 10 20 30 40 50 60 70

Fig. 8. Qd for starting selectionfor terminal velocitiesfrom 1 to
5 m/s.

Figure 8 shows that the global detectionprobability might
be acceptablenot only immediately after the leaderselec-
tion, but also sometime after the grouping and selection
procedure.Sincegroupingandleaderselectionrequire sig-
ni�cant informationexchangesbetweennodesandthusin-
troducesigni�cant overheadin thenetwork, onemightwant
to perform such procedureas seldom as possiblewhile
guaranteeingthe desireddetectionprobability.
The bene�cial e�ect of taking into accountstability in
group leaderselectioncan be observed by comparing the
periodic selectioncurves in Figs. 5, 6 and 7, that show
resultsassuminga minimum acceptableQd equal to 0.95.
One can in fact observe that the periodic updatetime dif-
fers in the three cases,with the mixed strategy requiring
an updateonly every n = 18 s, while the other strategies
require an updateat most every n = 13 s. The combina-
tion of node's Pd and stability introducedin the proposed
leaderselectionstrategyguaranteesthusan increaseof the
minimum updatetime from 13 to 18 s correspondingto
38% gain. The price paid to get such an improvementis
a slightly lower Qd value in the very �rs t secondsafter
each selectionprocedure.Although further studiesare re-
quiredto quantify theoverall impactof thetwo phenomena
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on overall performancein the secondary network (e.g. in
terms of throughput),the resultsstrongly suggest that the
proposedstrategymay provide a signi�cant advantage.
The trend of Qd as a function of time strongly depends
on the mobility of SUs. In Fig. 9 onecanobserve results
for nodesvelocitiesin the range of 1{20 m/s. The results
in Figs. 8 and 9 show that the oor value in the start-
ing selectionupdatestrategyis signi�cantly higher in the
vmax = 20 m/s case.Min andShin in [9] pointedout that
the sensingschedulinggain risesproportionally as node's
velocity increases.Onecould thuspredictthatwider range
of nodesvelocities lowers correlation betweennodesand
thusimprovesglobal sensingresults.
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Fig. 9. Qd for starting selectionfor terminal velocitiesfrom 1 to
20 m/s.
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Fig. 10. Floor valueof Qd vs. maximumnodevelocity for three
leaderselectionstrategies.

In orderto verify this assumption,the oor valueof global
detectionprobability wasevaluatedasa SU maximumve-
locity vmax function, with minimum velocity vmin set at
1 m/s (Fig. 10). One can seethat the higher the node's
maximumvelocity, the higher oor value of Qd. This is
determinedby correlationbetweenthe sensors.In low-ve-
locity scenarios,decisionsof nodesarehighly correlatedso
thereare a few large nodesgroups. Therefore, only a few
nodesareselectedandallowed to vote. In a high-velocity
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Fig. 11. Numberof active nodesvs. maximumnodevelocity.
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scenario the correlationbetweennodes' decisionsis small.
As a result, therearemorenodesgroupsandmoreuncor-
relatednodes.The higher the numberof active nodesand
the higher the average velocity, the higher the probability
that oneor a few nodesexperiencereliablechannelcondi-
tions. This is con�r med by Fig. 11, showing the number
of active nodes: the higher the nodesmobility, the higher
active nodesnumber. Moreover, the active nodeshigher
numberprovide lower overheadreduction. In Fig. 12 one
can observe the percentage of sleepingnodeswhich were
not selectedby the procedure.Thesenodesmay sleepand
thuslower theoverheadinformationexchangeaswell asre-
duceenergy consumption.For high-correlatedscenario the
reductionin the numberof updatesandthe corresponding
overheadis themost signi�cant. Evenin thelow-correlated
scenario, the reductionof active nodesnumberis however
still prominent(75% for vmax = 50 m/s) thusjustifying the
adoptionof a groupingandselectionprocedureevenat rel-
atively high speeds.

7. ConclusionandFutureWork

In this work a novel correlation-basednodegrouping and
selectionalgorithmshasbeenproposed,that takesinto ac-
countbothsensingperformanceandmobility of secondary
nodesby introducing a leaderselectionmetric that com-
binesnode's Pd and its stability. The performanceof the
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proposedalgorithm wasevaluatedandcomparedwith pre-
vious work by computersimulations.
Simulation resultsshow that by including stability in the
group leader selection criteria correlation-basedsensing
can operatefor longer time periods with acceptableper-
formancebefore an updateis needed. In particular, the
proposedschemeled to a 38% decreasein the numberof
updateswhile guaranteeinga network detectionprobability
above the required 0.95 threshold,at the price of a slight
reductionin the maximumvalue of the sameprobability.
It was also proven that the proposedselectionprocedure
guaranteesthe involvementof only 9% vs. 25% of nodes
in high vs. low-correlatedscenario, respectively, achieving
in both casesa strong overheadreductionandenergy con-
sumptionby allowing most of the nodesto entera power
saving mode.
Theproposedalgorithm requirestheavailability of informa-
tion aboutthenodesvelocities. It shouldbenotedhowever
that this information can be derived by meansof outdoor
(GPS)and indoor positioningsystemsbasedon technolo-
gies like Wi-Fi or RFID. Furthermore, the algorithm can
equally operateon relative comparison betweenthe nodes
mobility, rather than on their absolutespeed. This rela-
tive informationcanbe obtainedby monitoring the rateof
topologicalchange observed by a node(e.g.average num-
ber of neighborsvaried per second).Onecould thusargue
that this assumptionis overall more realistic than the one
of knowing exactly the local detectionprobability of each
node,sharedby the algorithm proposedin this work with
most of thesolutionsfor cooperative spectrum sensingpre-
viously proposedin the literature.
Futureavenuesfor further research includethe determina-
tion of the optimumbalancebetweenthe nodes' detection
probability and stability so to maximizethe global detec-
tion probability and at the sametime maximizethe inter-
val betweentwo groupingprocedureupdates.In addition,
the proposedscheme is currently being implementedin
a network simulatorto betterdetermine its impacton both
primary receiversandsecondary network throughput.
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