

Ultra Wide Band Group at University of Rome La Sapienza

A Physiologically Produced Impulsive UWB signal: Speech

Maria-Gabriella Di Benedetto

University of Rome La Sapienza

Faculty of Engineering

Rome, Italy

gaby@acts.ing.uniroma1.it

Observation: many physiologically produced signals are impulsive in nature

Their waveforms have Impulse Radio wave shapes

They are UWB since their centre frequency is the zero frequency

... a coincidence?

Neuronal pulses

Much of neural computation involves processing these neuronal spike trains

Spikes, Exploring the Neural Code (Computational Neuroscience)

Speech production mechanism

Speech production model for voiced sounds

Speech production model for voiceless sounds

Spectrum of a voiced sound

By courtesy of Hari Arsikere UCLA Speech Processing and Auditory Perception Laboratory UCLA, USA, Prof. Abeer Alwan Director

Spectrum of a voiceless sound

By courtesy of Hari Arsikere UCLA Speech Processing and Auditory Perception Laboratory UCLA, USA, Prof. Abeer Alwan Director

The model in the VOice CODER VOCODER

VOCODER strongest limitation

The model is way too simplistic in the case of sounds with a mixed voiced-voiceless nature

Mixed-Excited VOCODER

This model is based on linear combination of periodic and noise excitation

CELP VOCODER

Used in GSM, UMTS and many others

The best multi-pulse is selected from a set stored in a codebook

But why "best" is "best" still remains to be understood

Based on multi-pulse model presented by Atal and Remde, ICASSP, 1982

Spectrum of a mixed sound

Vocal folds

From Stevens, Acoustic Phonetics, The MIT Press, 2000

Looks like the transmitter antenna output: first derivative of a bell-shape pulse

Introduced by G.Fant et al. in 1985, refined by G. Fant, "The LF-model revisited.Transformations andfrequency domain analysis", in "STL-QPSR Journal", vol. 36, 119-156, 1995

Excitation signal at the glottis

Excitation signal at the glottis

Samples $m(kT_s)$ of an analog wave m(t) determine pulse position

From M.-G. Di Benedetto and G. Giancola, Understanding Ultra Wide Band Radio Fundamentals, Prentice Hall, 2004

Impulse Radio UWB Pulse Position Modulation

$$P_{x_{PPM}}(f) = \frac{\left| \Pi(\phi) \right|^2}{T_{\sigma}} \prod_{\square}^{\square} - \left| \Omega(\phi) \right|^2 + \frac{\left| \Omega(\phi) \right|^2}{T_{\sigma}} \prod_{\nu=-\square}^{+\square} \delta(\phi - \frac{\nu}{T_{\sigma}}) \prod_{\square}^{\square}$$

where W(f) is the Fourier transform of the probability density w and coincides with the characteristic function of w computed in $-2\pi f$

$$W(f) = \prod_{-\square}^{+\square} \omega(\sigma) \varepsilon^{-\varphi \pi \phi \sigma} \delta \phi = \left\langle \varepsilon^{-\varphi \pi \phi \sigma} \right\rangle = X(-2\pi \phi)$$

w(s) is the probability density function of samples $m(kT_s)$ of a stationary continuous process m(t)

From M.-G. Di Benedetto and G. Giancola, Understanding Ultra Wide Band Radio Fundamentals, Prentice Hall, 2004

Impulse Radio UWB Pulse Position Modulation

Experimental evidence

Synthesis of a vowel produced by one male and one female speaker

Experimental results

Experimental results

Conclusion

- Example of how UWB theory can help us understanding the structure of impulsive physiologically produced signals
- Interesting insights can be derived from what we know about properties of non-linear modulation in UWB

 Modeling production mechanisms in order to understand basic properties of physiologically produced signals

Challenging workframe

COST Action IC0902

Cognitive Radio and Networking for Cooperative Coexistence of Heterogeneous Wireless Networks

Chair: Maria-Gabriella Di Benedetto

http://newyork.ing.uniroma1.it/IC0902

Challenging workframe

COST Action IC0902

Cognitive Radio and Networking for Cooperative Coexistence of Heterogeneous Wireless Networks

Chair: Maria-Gabriella Di Benedetto

http://newyork.ing.uniroma1.it/IC0902

EU FP7 Network of Excellence ACROPOLIS

Advanced coexistence teChnologies ofr Radio OPtimisatiOn in Licensed and unlicensed Spectrum October 1, 2010