TDMA, FDMA, and CDMA

Telecomunicazioni
Undergraduate course in Electrical Engineering
University of Rome La Sapienza
Rome, Italy
2007-2008
Time Division Multiple Access (TDMA)

- Each user is allowed to transmit only within specified time intervals (Time Slots). Different users transmit in different Time Slots.
- When users transmit, they occupy the whole frequency bandwidth (separation among users is performed in the time domain).
TDMA : Frame Structure

- TDMA requires a centralized control node, whose primary function is to transmit a periodic reference burst that defines a frame and forces a measure of synchronization of all the users.
- The frame so-defined is divided into time slots, and each user is assigned a Time Slot in which to transmit its information.

![Diagram of TDMA Frame Structure]

- Frame T_F
- Reference Burst
- Time Slot T_S
TDMA: Frame Structure
Since there are significant delays between users, each user receives the reference burst with a different phase, and its traffic burst is transmitted with a correspondingly different phase within the time slot.

There is therefore a need for **guard times** to take account of this uncertainty.

Each Time Slot is therefore longer than the period needed for the actual traffic burst, thereby avoiding the overlap of traffic burst even in the presence of these propagation delays.

with guard time

without guard time
TDMA : preamble

- Since each traffic burst is transmitted independently with an uncertain phase relative to the reference burst, there is the need for a **preamble** at the beginning of each traffic burst.

- The preamble allows the receiver to acquire on top of the coarse synchronization provided by the reference burst a fine estimate of timing and carrier phase.

![TDMA Diagram]

Diagram:
- **Preamble**
- **Information**
TDMA: reference transmitter scheme

Digital signal S → SLOW IN → BUFFER → FAST OUT → TDMA coder → Pulse Shaper → Mod → S_{TX}

- Code generator
- Carrier generator

f_p
TDMA: a case study

\[
s^{(j)}(t) = \sum_k a^{(j)}_k \delta(t - kT)
\]

Digital signal of user \(j\)

Sequence of equally spaced binary antipodal symbols

\(a^{(j)}_k\): \(k\)-th binary antipodal symbol generated by user \(j\)

\(T\): time period between symbols
TDMA: a case study

Compressed signal

The symbols of the original signal are organized in groups of N_{bps} symbols. Each group is transmitted in a single Time Slot of duration T_S. Time Slots are organized in frames of duration T_F.

$$s^{(j)}(t) \rightarrow \text{SLOW IN} \rightarrow \text{BUFFER} \rightarrow s_{c}^{(j)}(t)$$
TDMA: a case study

\[s^{(j)}(t) = \sum_k a_k^{(j)} \delta(t - kT) \]

\[s_{C}^{(j)}(t) = \sum_{m} \sum_{k=1}^{N_{bps}} a_{k+mN_{bps}}^{(j)} \delta(t - kT_C - mT_F) \]

\(T_C \) : time interval between symbols after compression
TDMA: a case study

The position in time of each group is modified according to the TDMA code, which is assigned to the user.

In other words, the TDMA code indicates which slot inside each frame must be occupied by the user.
TDMA: a case study

\[s^{(j)}_C(t) = \sum_m \sum_{k=1}^{N_{bps}} a^{(j)}_{k+mN_{bps}} \delta(t - kT_C - mT_F) \]

\[s^{(j)}_{TDMA}(t) = \sum_m \sum_{k=1}^{N_{bps}} a^{(j)}_{k+mN_{bps}} \delta(t - kT_C - c^{(j)}_m T_S - mT_F) \]

\(c^{(j)}_m \) : TDMA code assigned to user \(j \) for the \(m \)-th frame
TDMA: a case study

Transmitted signal at Radio Frequencies

All users adopt the same carrier frequency f_p for modulating the baseband signal

from the TDMA coder $S_{TDMA}(t)$

Pulse Shaper

Carrier generator

Mod $\rightarrow S^{(j)}_{TX}(t)$

$S_{bb}(t)$ Base-band signal

$S_{TDMA}(t)$

$S^{(j)}(t)$ Base-band signal
TDMA: a case study

\[s_{TDMA}^{(j)}(t) = \sum_m \sum_{k=1}^{N_{bps}} a^{(j)}_{k+mN_{bps}} \delta(t - kT_C - c^{(j)}_m T_S - mT_F) \]

For the sake of simplifying the notation, let us consider the simple case of BPSK (in phase carrier modulation)

\[s_{TX}^{(j)}(t) = \sqrt{2P_{TX}} (s_{TDMA}^{(j)}(t) \ast g_o(t)) \sin(2\pi f_p t + \varphi^{(j)}) \]

\[g_o(t) : \text{energy-normalized impulse response of the Pulse Shaper. It has unitary energy.} \]

\[P_{TX} : \text{transmitted power} \]

\[f_p : \text{carrier frequency} \]

\[\varphi^{(j)} : \text{instantaneous phase} \]
TDMA: a case study

\[s_{TX}^{(j)}(t) \]

\[s_{RX}^{(j)}(t) \]

BEWARE!
At risk for multi user interference!

Received signal after propagation over a two-paths channel
TDMA: a case study

Front-end filtering
Demodulation
Sampling
Threshold detection

Received waveform

Received binary antipodal signal
Frequency Division Multiple Access (FDMA)

- Each user transmits with no limitations in time, but using only a portion of the whole available frequency bandwidth.
- Different users are separated in the frequency domain.
FDMA vs. TDMA

- Frequency division is very simple: all transmitters sharing the medium have output power spectra in non-overlapping bands.
 - Many of the problems experienced in TDMA due to different propagation delays are eliminated in FDMA.

- The major disadvantage of FDMA is the relatively expensive and complicated bandpass filters required.
 - TDMA is realized primarily with much cheaper logic functions.

- Another disadvantage of FDMA is the rather strict linearity requirement of the medium.
FDMA: reference scheme

Digital signal

Pulse Shaper → Mod

Code generator

Carrier generator

S_{TX}
FDMA: a case study

Digital binary signal
\[s^{(j)}(t) \]

Base-band signal
\[s_{bb}^{(j)}(t) \]

FDMA-coded signal
\[s_{\text{FDMA}}^{(j)}(t) \]

Generated bit stream for each user

Signal after Pulse Shaping

Signal after FDMA coding

Digital binary signal

Base-band signal

FDMA-coded signal
FDMA: a case study

Digital binary signal

\[s^{(j)}(t) = \sum_k a_k^{(j)} \delta(t - kT) \]

Base-band signal

\[s_{bb}^{(j)}(t) = s^{(j)}(t) * g_o(t) \]

FDMA-coded signal

\[s_{FDMA}^{(j)}(t) = \sqrt{2P_{TX}} s_{bb}^{(j)}(t) \sin(2\pi(f_p + c^{(j)}(t)\Delta f)) + \varphi^{(j)} \]

S_{TX}^{(j)}(t) \(\Delta f \): frequency spacing between adjacent users

\(c^{(j)} \): FDMA code assigned to user \(j \)
FDMA: a case study

Propagation
Demodulation (Decoding)
Sampling
Threshold detection

Transmitted signal at RF
Received base-band waveform
Samples at the receiver output
Received binary stream
TDMA + FDMA

FDMA

TDMA + FDMA
TDMA + FDMA in GSM900 standard
Code Division Multiple Access (CDMA)

- **FDMA (Frequency Division Multiple Access)**
- **TDMA (Time Division Multiple Access)**
- **CDMA (Code Division Multiple Access)**
CDMA: basic principles

- In CDMA each user is assigned a unique code sequence (spreading code), which it uses to encode its data signal.
- The receiver, knowing the code sequence of the user, decodes the received signal and recovers the original data.
- The bandwidth of the coded data signal is chosen to be much larger than the bandwidth of the original data signal, that is, the encoding process enlarges (spreads) the spectrum of the data signal.
 - CDMA is based on spread-spectrum modulation.
- If multiple users transmit a spread-spectrum signal at the same time, the receiver will still be able to distinguish between users, provided that each user has a unique code that has a sufficiently low cross-correlation with the other codes.
CDMA schemes

- **Direct Sequence CDMA (DS-CDMA)**
 - The original data signal is multiplied directly by the high chip rate spreading code.

- **Frequency Hopping CDMA (FH-CDMA)**
 - The carrier frequency at which the original data signal is transmitted is rapidly changed according to the spreading code.

- **Time Hopping CDMA (TH-CDMA)**
 - The original data signal is not transmitted continuously. Instead, the signal is transmitted in short bursts where the times of the bursts are decided by the spreading code.
Direct Sequence Spread Spectrum

\[C_x \]

\[x(t) \rightarrow \text{CODING} \rightarrow s(t) \]

Band of the original signal

\text{frequency}

Band of the coded signal

\text{frequency}
Direct Sequence Spread Spectrum

Original signal
(band related to the bit rate)

Spreading sequence composed by chips, with chip rate >> bit rate

Coded signal
(band related to the chip rate)
Direct Sequence Spread Spectrum

Signal 1

Signal 2

Coded signal 1

Coded signal 2

Sum of coded signals 1 and 2
Direct Sequence Spread Spectrum

Received signal

code used for signal 1

multiplier

signal 1

decoded signal
In FH-SS, the transmitter spreads the spectrum by continuously jumping from one frequency channel to another. A larger number of intervals leads to a better spreading. Each user selects the next frequency hop according to a code (FH code).
Frequency Hopping Spread Spectrum

- Time-frequency occupation for a FH-SS signal

![Diagram showing frequency hopping spread spectrum]

- **f₀**
- **f₁**
- **f₂**
- **f₃**
- **f₄**
- **f₅**
- **f₆**
- **f₇**
- **f₈**
- **f₉**

- **Dwell time**
- **FH code period**
Frequency Hopping Spread Spectrum

- FH-SS signal robustness to interferers at constant frequency

Interference limited at a dwell time

Interferer at constant frequency
Frequency Hopping Spread Spectrum

Coexistence of different FH-SS signals

If codes are well chosen (orthogonal) \[\text{No interference!!}\]
Partial correlations among encoded signals arise when no attempt is made to synchronize the transmitters sharing the channel, or when propagation delays cause misalignment even when transmitters are synchronized.

Partial correlations impede the receiver to totally cancel the contributions of other users even in the presence of spreading codes having low cross-correlation.

In presence of partial correlations, the received signal is therefore affected by Multi User Interference.

The partial correlations can be reduced by proper choice of the spreading codes, but cannot be totally eliminated.

CDMA system capacity is thus typically limited by the interference from other users, rather than by thermal noise.
CDMA: the near-far problem

If all the users transmit at the same power level, then the received power is higher for transmitters closer to the receiving antenna.

Thus, transmitters that are far from the receiving antenna are at a disadvantage with respect to interference from other users.

This inequity can be compensated by using power control.

Each transmitter can accept central control of its transmitted power, such that the power arriving at the common receiving antenna is the same for all transmitters.

In other words, the nearby transmitters are assigned a lower transmit power level than the far-away transmitters.

Power control can be easily achieved in centralized access schemes (e.g. third generation cellular networks), but is a challenging issue in distributed systems.
DS-CDMA: reference scheme

Transmitter

\[S \xrightarrow{\text{Digital signal}} \text{CDMA coder (multiplier)} \xrightarrow{} \text{Pulse Shaper} \xrightarrow{} \text{Mod} \xrightarrow{S_{TX}} \]

- \(S \): Digital signal
- CDMA coder (multiplier)
- Pulse Shaper
- Mod
- \(S_{TX} \): Transferred signal
- \(f_P \): Frequency parameter
- Code generator
- Carrier generator
DS-CDMA: reference scheme

Receiver

S_{RX}
Received signal

Front-End filter and demodulator

Multiplier

Integrator

to the decisor

Code generator
DS-CDMA: a case study

Binary data signal

\[s^{(j)}(t) \]

Codeword

\[c^{(j)}[k] \]

DS-CDMA-coded signal

\[s_{\text{DS-CDMA}}^{(j)}(t) \]
DS-CDMA: a case study

Digital binary signal

\[s^{(j)}(t) = \sum_{k} a^{(j)}_k \delta(t - kT) \]

DS-CDMA-coded signal

\[s^{(j)}_{\text{DS-CDMA}}(t) = \sum_{k} a^{(j)}_k \sum_{m=1}^{N_{\text{DS}}} c^{(j)}[m] \delta(t - mT_C - kT) \]

\[N_{\text{DS}} \]: length of the codeword
\[T_C \]: chip time

Transmitted signal

\[s^{(j)}_{\text{TX}}(t) = \sqrt{2P_{\text{TX}}} (s^{(j)}_{\text{DS-CDMA}}(t) \ast g_o(t)) \sin(2\pi f_P t + \phi^{(j)}) \]

Signal after propagation over a multipath channel

\[s^{(j)}_{\text{RX}}(t) = s^{(j)}_{\text{TX}}(t) \ast h^{(j)}(t) = \sum_{l=1}^{L} \alpha^{(j)}_l s^{(j)}_{\text{TX}}(t - \tau^{(j)}_l) \]
DS-CDMA: a case study

Received signal after Front-End filtering and demodulation

Signal obtained by direct multiplication of the base-band signal with the spreading signal

Received sequence after integration of the above samples