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AEP

Asymptotic Equipartition Property



AEP

In information theory, the analog of the law of large numbers is the asymptotic
equipartition property (AEP).

The law of large numbers states that for independent, identically distributed
(i.i.d.) random variables one has:

		
1
n

Xii=1
n∑ → E X



The law of large numbers 

Let X1,…,Xn be a sequence of i.i.d. random variables, each with mean E(Xi) =μ  
and standard deviation σ, we define:

  
lim Pr

n→∞
{|Xn − µ|> ε}= 0

  
Xn =

X1 + X2 + ...+ Xn

n

The Weak Law of Large Numbers (WLLN) states for all  ε> 0 then,



AEP

The asymptotic equipartition property (AEP) indicates that for a sequence of
independent and identically distributed (i.i.d) random variables with probability
p(X1, X2, ... Xn) which is the probability of observing the sequence X1, X2 , ... Xn
one has:

  

1
n

log
1

p(X1,X2,..,Xn )
→ H (X )

Proof: Functions of  independent random variables are also independent random 
variables. Thus, since the Xi are i.i.d., so are log p(Xi). Hence, by the weak law of  
large numbers:

  

1
n

log 1
p(X1,X2,...,Xn )

=
1
n

log 1
p(Xi )i

∑ → E log 1
p(X )

= H (X )                                



AEP

This means that the probability p(X1,X2,…,Xn) assigned to an observed
sequence will be close to:

		
1
n
log 1

p(X1 ,X2 ,..,Xn)
→H(X )

!!2−nH



AEP

This property allows you to divide the set of  all the possible sequences into two 
sets:

Most of  our attention will be on the typical sequences

The typical set, where the sampled entropy is close to the true entropy

The nontypical set that contains all the other sequences



AEP: example

Suppose that a random variable X∈{0,1} has a probability mass function
defined by p(1)=p and p(0)=q.

If X1,X2, . . . , Xn are i.i.d. according to p(x), the probability of a sequence
X1,X2, . . . , Xn is:

!! p(xi )i=1
n∏

For example, the probability of  the sequence (1,0,1,1,0,1) is:

!!p
Xi∑ qn− Xi∑ = p4q2

Clearly, it is not true that all 2n sequences of length n have the same
probability.



AEP

One might be able, however, to predict the probability of the sequence that is
actually observed

The question is: what is the probability p(X1,X2, . . . ,Xn) of the outcomes X1,X2, . .
. , Xn, where X1,X2, . . . , Xn are i.i.d. according to p(x) (i.i.d.~p(x))

In other words: 

		Pr (X1 ,X2 ,...,Xn):p(X1 ,X2 ,...,Xn)=2
−n(H±ε ){ }≈1

The answer is: p(X1, X2, …Xn) is 2-nH  with high probability

convergence in probability



AEP: example

Previous example p(1)=p and p(0)=q

If X1,X2,…,Xn are i.i.d. according to p(x), the probability of the sequence
X1,X2,…,Xn is:

!! p(xi )i=1
n∏

According to the asymptotic equipartition property the number of "1" in the
sequence is with high probability equal to np and all the sequences of this type
have the same probability 2-nH(p)



Convergence of random variables

Definition: Given a sequence of  random variables, X1,X2, . . ., we say that the 
sequence X1,X2, . . ., converges to a random variable X:

!!∀ε >0,Pr Xn − X > ε{ }→0
In probability if

That is, the variables differ only for events with zero probability.

In mean square if

!!E Xn − X( )2→0
With probability 1 (also called almost surely) if

		Pr limn→∞
Xn = X{ }=1



Theorem  AEP

If  X1,X2,. . .,Xn are i.i.d. with X∼ p(x) , then

If X1,X2, . . . , Xn are independent then also f(X1), f(X2), ..., f(Xn) are
independent (functions of independent r.v. are also independent), that is if
X1,X2, . . . , Xn are i.i.d. then so are log p(Xi)
Hence, by the weak law of  large numbers:

!!
−1
n
log p(X1 ,X2 ,...,Xn)→H(X ) in probabilitàin probability

!!

−1
n
log p(X1 ,X2 ,...,Xn)= −

1
n

logp Xi( )
i
∑ → E log p(X ) convergenza in probabilità

=H(X )

Convergence in probability



The typical set

Definition: The typical set with respect to p(x) is the set of sequences (X1,X2, . . .
, Xn) such that:

!!2
−n(H(X )+ε ) ≤ p(x1 ,x2 ,...,xn)≤2−n(H(X )−ε )

!!Aε
(n)



The typical set

The typical set has the following properties: 

!!Aε
(n)

Summing up: the typical set has probability close to 1, all the elements of  the 
typical set have same probability, and the number of  elements in the typical set is 
close to 2nH

!!Pr Aε
(n){ }>1−ε for n sufficiently large

!!
If (x1 ,x2 ,...,xn)∈Aε

(n) then H(X )−ε ≤ −1
n
logp(x1 ,x2 ,...,xn)≤H(X )+ ε

!! Aε
(n) ≤2n(H(X )+ε ) where Aε

(n) is the cardinality of Aε
(n)

!! Aε
(n) ≥(1−ε )2n(H(X )−ε ) for n sufficiently large



Consequences of the AEP

We would like to find the shortest possible description of  these sequences (coding)

Let X1,X2, . . . , Xn be independent, identically distributed random variables
drawn from the probability mass function p(x).

Non-typical set

Typical set

		Aε
(n) :2n(H+ε ) elements



Consequences of the AEP

!!

E 1
n
l(Xn)⎡

⎣
⎢

⎤

⎦
⎥ ≤H(X )+ ε for n sufficiently large

where l(xn)
indicates the length of  the code word that corresponds to xn

Therefore, it is possible to represent sequences Xn using nH(X) bits on the
average.

Let Xn= X1,X2, . . . , Xn i.i.d. with pmf p(x)
Let 
there exists a code that maps sequences Xn of  length n into binary strings such that 
the mapping is one-to-one (and therefore invertible) and

!ε >0



Observation

Let Xn = X1,X2, . . . ,Xn, n be a sequence of Bernouilli (*) r.v. with parameter
p =0.9

The typical sequences are those that have 90% of  "1" bits
However this does not include the most probable sequence composed of  all "1"

So the typical set does not include the most probable sequence composed of  all "1"

It can be shown that the ”high probability set” composed of  the most probable 
sequences, that is including the typical set AND the sequence of  all “1”, and the 
typical set have "almost" the same size

(*) a Bernouilli r.v. (p) is a binary r.v. that takes the value 1 with probability p



Observation (continued)

• The concept of a typical set is generally different from that of a high probability set

• The typical set contains the "typical" sequences, i.e. those that reflect the characteristics
of the source

• The high probability set contains sequences having, by their nature, high probability

• The two sets have almost the same size



Source coding theorem

Theorem : the source can be coded with a source encoder in a bit stream with a
transmission rate equal to R + ε, for any ε> 0

Consider a source consisting of repeated tests of a r.v. X with p(x) and with
r trials/second

The rate R of the source in bits/s is defined as:

!
R = rH X( )

Therefore, the problem is to find codes that make ε small:
we often choose to adopt sub-optimal codes that are more easily realized



Source encoding

What are the necessary and desirable properties for source coding?

Required: a code must be uniquely decodable (there cannot be
two symbols identified by the same codeword)

Desirable: the average length of a codeword should be
minimized in order to minimize the bit rate required to transfer
the source symbols



Consider a source that emits symbols in the alphabet:

S = a1,a2,...,aK{ }

p(a1), p(a2 ),..., p(aK )

l1,l2,...,lK{ }

Source encoding

characterized by the following probabilities:

and suppose we have chosen a code that associates to each of  the 
K symbols, a codeword that has length:



Code properties

The average length of a codeword is therefore given by:

L = p(ak )lk
k=1

K

∑

η =
Lmin
L

Lmin = H p( )

and the code can be characterized by an efficiency defined as:

where Lmin is the minimum average length of a codeword defined by
the source coding theorem, i.e.:



Prefix rule

However inserting a “,” is not feasible in digital communications

Once source symbols are coded into a sequence of bits, one must
ensure that each symbol in the sequence is identifiable

If one could one would insert a special symbol between codewords,
such as a “,”. In this way each symbol in the sequence would be
identifiable

The way out is codes that check the prefix rule

A code that checks the prefix rule is a variable-length code in which
no codeword can be the beginning (prefix) of another codeword



Prefix rule

Example:



Shannon-Fano coding
The Shannon-Fano code verifies the prefix rule

symbol probability 1° digit 2° digit 3° digit 4° digit 5° digit

a1 0.3 0 0

a8 0.3 0 1

a6 0.15 1 0 0

a3 0.10 1 0 1

a4 0.08 1 1 0

a7 0.05 1 1 1 0

a2 0.01 1 1 1 1 0

a5 0.01 1 1 1 1 1

0.6
0.4

0.3
0.3

0.25
0.15

The coding is not unique because it is not always possible to create classes that are 
equally likely

It tries to create classes that are equally likely



Huffman coding
Check the prefix rule

a1

a8

a6

a3

a4

a7

a2

a5

0.30

0.30

0.15

0.10

0.08

0.05

0.01

0.01

0

1

0.02

0

1

0.07

0

1

0.15

0.250

1

0.400

1

0.60
0

1

0
1 P=1

example
code of  a7 (01001)-1 or 10010


