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Channel Coding
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The channel coder is designed for the purpose of

Detect errors and possibly allow retransmission

Correct errors thanks to the introduction of  redundancy
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Error correction codes

Block codes: blocks of  k bits are mapped into blocks of  n bits, 
where n>k, in order to introduce (n-k) redundant bits 

Convolutional codes: also in this case the rate increases, but the 
source bits are not divided into blocks

The ratio k/n is called code rate

The code rate represents the fraction of  bits 
corresponding to information bits

The block code increases the rate by a factor of  n/k



Performance analysis

Performance analysis consists in comparing the uncoded system 
against the coded system

The coded system should be able to tolerate a lower SNR!

This is done by considering the SNR required at 
the receiver to achieve a fixed probability of  error

G code gain
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Block codes

An (n,k) block coder maps blocks of  k source bits into blocks of  n coded bits.

The block coder consists of  modulo 2 adders
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Example: parity check code with 1 bit

Parity-check code: the number of  “1” in a coded block must be even.

The first k bits of  the codeword are the same the source bits

In the codeword, an extra bit is appended to ensure that there are an 
even number of  “1”

!!
C (1) = B(1) ,⋅⋅⋅,C (k ) = B(k )
C (n) =C (k+1) = B(1)⊕B(2)⊕⋅⋅⋅⊕B(k )



Parity-check codes

In general, in parity-check codes all codewords are modulo-two summations
of  subsets of  the source bits

Representing the input and output bits in row vectors b and c, then

!c = bG
where all the summations are modulo-two

G is the code generator matrix

A parity-check code has a generator matrix of  the form

!!G = Ik |P⎡⎣ ⎤⎦
where Ik is the dimension k identity matrix

Codes with G matrices of  this type are called systematic



Example: the Hamming code (7,4)
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Generator matrix of  (7,4) Hamming code



Definitions and properties

Given b ,   c=bG is called a codeword

The set of  all the codewords is called code or codebook

Every codeword is a modulo-two summation of  rows of  the generator 
matrix

Therefore, the modulo-two sum of  any two codewords is a codeword

Parity-check codes form a closed set under the operation of  modulo-two 
summation

Furthermore, all linear codes are equivalent to systematic codes, after 
reordering columns and elementary operations on the rows of  the generation 
matrix G



Distance and weight of Hamming

Hamming weight

The weight of Hamming is the Hamming distance from a string consisting of
only "0"

Hamming distance

Hamming distance is the number of different elements between two strings

The Hamming distance is therefore the number of variations to be made to
convert one string into another

For linear codes the minimum Hamming distance is equal to the minimum
Hamming weight (number of one-bits) among all non-zero codewords

!!
dH ,min =minc∈C

c≠0
wH(c)



Soft vs. hard decoding

In the case of  soft decoding the detector chooses the closest codeword in terms 
of  the Euclidean distance measured in symbols

In the case of  hard decoding the detector chooses the closest codeword in terms 
of  Hamming distance measured in bits



Example

Consider a line encoder that maps {0,1} into +a and - a

The following is true:

!!dE =2a dH
(*) S

ee  note for proof

(*) The square of  the Euclidean distance is the square of  the distance in one component (2a)2, times the 
number of  the components that differ, which is the Hamming distance. The results follows immediately.

where dE is the Euclidean distance and dH is the Hamming distance 
between a pair of  codewords



Example

!!dH ,min =2⇒dE ,min =2a 2

In fact:

In the case of  the parity check code example with 1 bit one has

The smallest Hamming weight among all non-zero codewords is two

The distinguishing feature of  all codewords is that they have an even-valued 
Hamming weight 

The smallest Hamming weight is also the minimum Hamming distance 
between codewords



Performance of soft decoders

Discrete-time additive Gaussian noise channel

C is a codeword that is transmitted as a vector with binary antipodal components
The noise samples have variance σc (subscript indicates “coded”)
The received samples Qk can be collected in a vector q

q = a+n

The maximum likelihood detector selects the vector â in Ωa such that 
the Euclidean distance between â and the observed vector q is minimum
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Let dE,min be the minimum Euclidean distance between the transmitted vector and all other 
vectors in Ωa the following lower bound is true:

If  there are few codewords at distance dE,min, then the probability of  error is close to this limit
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where n is a vector of  i.i.d. Gaussian random variables
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Performance of soft decoders

A crude upper bound on the number of  codewords of  distance dE,min from any 
codeword is 2k – 1, hence an upper bound on the block error probability is
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Example

In the parity check code with 1 bit we know that
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!!dH ,min =2⇒dE ,min =2a 2

and therefore



Coding Gain

In the case of  antipodal transmission +a and –a one has

		
Prbit error ,uncoded =Q

a
σ u
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In the uncoded case, we do not refer to the symbol but to the Pe of  the 
information bits

Note: depending on the medium, modulation technique, and bit rate,σu
and σc may not be equal

σuis the Gaussian noise variance at the slicer input for the uncoded system



Coding Gain

		
Prbit error ,soft decoding ≥

1
k
Prblockerror ,soft decoding

		Prbit error ,soft decoding ≤Prblockerror ,soft decoding



Example

Parity check code with 1 bit

One can estimate the probability of  bit errors by setting the arguments 
of  Q(.) equal (ignoring the constant multipliers)

ac 2
σ c

=
au
σ u

and so

SNRu =2SNRc
The coding gain is therefore 3 dB



Code Gain

So if  n=3 the power required for the coded system is 1.25 dB smaller 
than for the uncoded system

The coding gain is 3 dB but 1.75 dB is lost due to the presence of  redundancy bits.

But the coded system has a rate of  n/(n-1) so if  you consider that you 
spend an energy n.a2 to send n-1 information bits, the energy you spend 
for one information bit is a2 .n/(n-1).



Performance for Hard decoders

For a hard decoder, the decoding takes place after the slicer and the equivalent 
binary channel after the slicer can be usually modeled as a BSC

x=0 1-p

p(y/x)=1-p

p
p

x=1 y=1

y=0

A decision maker selects the code word ĉ closest to c* in terms of  Hamming 
distance

Let c* denote the bits emerging from the BSC 



Example: the Hamming code (7,4)

c=0000000 (transmitted codeword)

The detected codeword is ĉ=0001011, which is closer in Hamming distance than 
the all zero codeword.

c*=0001010 (received codeword)

ĉ=0001011

But the question is: how many bits can be corrected by such a code?



Correction capability

How many errors can be corrected by a hard decoder detector?

t = dH ,min −1( ) / 2⎢⎣ ⎥⎦

For example, for the parity check code with 1 bit, t =0

While for the Hamming code (7,4),  t = 1

One can be certain of  correcting up to t bit errors, but some 
error patterns with more bit errors than t may be correctable
also, unless the code is a so-called perfect code

If c* has fewer than

Errors, then those errors can be corrected



Perfect code

A perfect code is such that

All bit patterns of  length n are within Hamming distance t from a codeword

No bit pattern of  length n is at a Hamming distance less or equal than t 
from more than 1 codeword

The Hamming code (7,4) is a perfect code

The seven-bit patterns are either a codeword or one bit distant from 
exactly one codeword.

Therefore if  one sends c and there are 2 bit errors then c* is at distance 1 
from a code ĉ ≠ c and thus there is error

Perfect codes are optimal on the BSC in the sense that they minimize the probability 
of  error among all codes with the same n and k 



Perfect code

The probability of  m bit errors in a block of  n bits is a binomial 
distribution

!!
P(m,n)= n

m
⎛

⎝⎜
⎞

⎠⎟
pm(1− p)n−m = n!

m!(n−m)!p
m(1− p)n−m

In the case of  perfect code it is easy to determine the performance of  a hard 
decoder

In the case of  perfect codes there is a symbol decoding error if  more 
than t bits are incorrect

		
Prblockerror = P(m,n)=1− P(m,n)

m=0

t

∑
m=t+1

n

∑



Example

For p=10-2 the probability of  block error is about 2*10-3

Coding seems to reduce the probability of  error by a factor of  5,
If  p=0.01,  then Prblock error=0.002

The Hamming code (7,4) is a perfect code

		Prblockerror =1−(1− p)
7 −7p(1− p)6

However, the coded system requires a bandwidth 7/4 times larger than 
the uncoded system and a more accurate evaluation shows that the true 
gain is very small



For non-perfect codes

In the case of  non perfect, some patterns with more than t bit errors 
can be corrected and an upper bound is:

		
Prblockerror ≤ P(m,n)

m=t+1

n

∑

In practice, many codes are quasiperfect, meaning that although some 
error patterns with t+1 bit errors can be corrected, none with t+ 2 or 
more can be corrected. For these we can get a lower bound

		
Prblockerror ≥ P(m,n)

m=t+2

n

∑


