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Block codes and convolutional codes



Parity check matrix

Soft and hard decoders find codewords closest (in Euclidean or 
Hamming distances) to the received block.

Implementation becomes difficult for large and k and n, 
since there are 2k distances that need to be computed and 
compared.

For hard decoding it is possible to implement efficient 
decoding techniques



Parity check matrix

Consider a systematic linear (n, k) block code, which has a generator 
matrix of  the form

!!G = Ik |P⎡⎣ ⎤⎦
Given a row vector b of  k bits, the corresponding codeword is c=bG, a
row vector which can be written 

!
c = b a⎡⎣ ⎤⎦

where a=bP is a row vector with n-k parity-check bits and one has

!!

bP⊕a=0

b a⎡⎣ ⎤⎦
P
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Parity check matrix

or

!!

bP⊕a=0

b a⎡⎣ ⎤⎦
P
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cH '=0 with
H = P '|In−k⎡⎣ ⎤⎦

H is called the parity-check matrix

H can be used to check if  a vector c is a codeword



Example: the code for parity control
(k + 1, k)

For the parity check code (k + 1, k) the parity check matrix is

!!
H = 1 1 1 . . . 1 1⎡

⎣
⎤
⎦

One can check in fact if  a bit vector is a codeword by summing 
(modulo-two) all of  the bits and checking if  the sum is zero.



Example - Hamming code (7,4)

c2 =[0110101], is not a codeword and c2H’= [100]

The parity-check matrix for the (7,4) Hamming code is

!!

H =
1 1 1
0 1 1
1 1 0

0 1 0
1 0 1
1 0 0
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1
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while c = [0110001] is a code word since cH’=0



Syndrome

A parity check matrix can be found for all linear codes even though they are 
non-systematic block 

For a received vector cr a transmitted codeword ct and the error pattern 
e, one has: 

!cr = ct ⊕e

The parity check matrix is a compact representation of  a code

And the syndrome is defined

!!s = crH '= ctH '+eH '= eH '
The syndrome is zero if cr is a codeword, which occurs if and only if e
is a codeword (recall that 0 is always a codeword of a linear code).
Efficient decoders use the syndrome to flag the position of an error,
which can then be corrected



Hamming codes

For a Hamming code, the parity-check matrix is constructed 
by letting the n=2m-1 columns be all possible binary vectors 
with m=n-k elements, except the zero vector

The parity-check matrix has n columns each with n–k bits

For any positive integer m there exists a Hamming code with

(n,k) = (2m −1, 2m −1−m)



Cyclic codes

Some Hamming codes are cyclic codes

An (n,k) linear block code is said to be cyclic if  any cyclic shift 
of  a codeword produces another codeword

The algebraic properties of  cyclic codes permit collapsing the 
information contained by the generator matrix into a single 
polynomial, called the generator polynomial, or by the dual 
parity polynomial

The most practical block codes are cyclic codes



BCH and Reed-Solomon codes

Bose, Ray-Chaudhuri, Hocquenghem, 
1960

The most important cyclic codes are the BCH codes

These are very efficient codes that allow the correction of  
multiple errors (satellite communications, CDs, DVDs)

A subset of  these codes are the very famous Reed-Solomon 
codes (Voyager, CD, Blueray, QRcodes, Wimax, DSL, DVB)



Maximal-Length Shift Register Codes



D D D D

+

Xk Xk-1 Xk-2 Xk-3 Xk-4

Case m=4

The shift register is loaded with 4 bits and clocked 2m-1 times

The output forms the 2m-1 length code

The result is an (n,k)=(2m-1, m) block code

The output is periodic with period 2m-1

Maximal-length shift register codes

The code is cyclical



Example: state transition matrix for the m=4 
maximal-length shift register

This is a cyclic 
code (15,4) in 
the case m=4

The Hamming weight is 2m-1

The minimum Hamming distance is 8
Correction capacity: 3 bit errors
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Can you prove this?



Convolutional codes

A convolutional coder is a finite memory system (rather than a
memoryless system, as in the case of the block coder).

A good part of their performance is attributable to the
availability of practical soft decoding techniques.

The name refers to the fact that the added redundant bits are
generated by modulo-two convolutions

Convolutional codes are widely used because they provide
better performance than block codes

As for block codes, linear convolutional coders are constructed
using modulo-two adders with the addition of delay elements.



Example of convolutional codes

Conv(1/2)
Rate 1/2

Conv(2/3)
Rate 2/3
Note: it is systematic



Generator matrix

Example of  the conv(1/2) case

!!G(D)= 1⊕D2 ,1⊕D⊕D2⎡⎣ ⎤⎦

Example of  the conv(2/3) case

!!
G(D)= 1 0

0 1
1⊕D
D

⎡
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⎢

⎤

⎦
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Parity check matrix

Example 
conv(2/3)

!!

G(D)= 1
0

0
1

1⊕D
D

⎡

⎣
⎢

⎤

⎦
⎥ = Ik |P⎡⎣ ⎤⎦

H = P '|In−k⎡⎣ ⎤⎦ = 1⊕D,D,1⎡⎣ ⎤⎦

!!C(D)H '(D)=0
Verify that for all codewords one has

!!

Ck
(1)⊕Ck−1

(1) ⊕Ck−1
(2) =Ck

(3)

⇒C (3)(D)= (1⊕D)C (1)(D)⊕DC (2)(D)
⇒(1⊕D)C (1)(D)⊕DC (2)(D)⊕C (3)(D)=0
⇒C(D)H '(D)=0



Length of a convolutional code

!!
M =1+max

i , j
deg gij(D)( )⎡
⎣

⎤
⎦

The constraint length of  a convolutional code is defined as 1+ the 
maximum degree of  the polynomials in the generator matrix

For conv(1/2), M=3

For conv(2/3), M=2


