Course of Optical Communications - Telecommunication Engineering

Prof. Maria-Gabriella Di Benedetto

Practice	Work	n°4 –	11/05/2006
----------	------	-------	------------

Last Name:_____

First Name: _____

PROBLEMS

4.1 When $3x10^{11}$ photons emitted at a wavelength $\lambda = 0.85 \,\mu\text{m}$ hit a PIN photodiode, the terminals of the device get $1.2x10^{11}$ electrons. What is the quantum efficiency and the responsivity of the photodiode at this wavelength?

4.2 A PIN photodiode with quantum efficiency η =0.7 receives an optical power P_{in}=1.5 μ W. Find: a) The responsivity of the photodiode for a 1.34 μ m wavelength.

b) The generated photocurrent.

4.3 The quantum efficiency of a APD Si diode is $\eta = 0.8$ for the detection of the optic radiation of $\lambda = 0.9 \mu m$ wavelength. The APD is such that for an incident optical power $P_{OPT} = 0.5 \mu W$, an output current $I_p = 11 \mu A$ is generated. Determine the gain M introduced by the photo-multiplication effect.

4.4 A photodiode has a quantum efficiency of 0.65 when it receives photons of energy $E = 1.5 \times 10^{-19}$ J. What is the working wavelength of the photodiode? What is the incident optical power P_{OPT} needed to generate a photocurrent I_P = 2.5 μ A?

4.5 A PIN photodiode generates 1 electron for every 3 incident photons at wavelength $\lambda = 0.8 \ \mu m$. Find:

a) The quantum efficiency of the photodiode.

b)The maximum suitable bandgap energy.

c) The photocurrent when the optical power is 10^{-7} W.

4.6 What is the wavelength to make the quantum efficiency equal to the responsivity?

4.7 The quantum efficiency of a APD photodiode is 70% in the second window. When the incident optical power is 0.25 μ W the photocurrent is 10 μ A. What is the multiplication gain of the photodiode?

4.8 At the output of an optical receiver with a bandwidth B=1 GHz a photocurrent of 0.1 mA is detected. What is the shot noise current if the dark current is 0.1μ A?

4.9 Consider the optical receiver in Figure 1.

Figure 1. Optical receiver

The light arriving at the input of the CPC concentrator is characterized by a wavelength $\lambda = 1550$ nm, and by an irradiance $I_R = 0.3 \text{ mW/m}^2$. The CPC concentrator provides an optical gain that can be assumed constant and equal to $G_T = 10 \text{ dB}$. The receiver has an active area $A = 3 \text{ cm}^2$ and a quantum efficiency $\eta=0.75$. Assume that a PIN photodiode is used.

a) Determine the generated photocurrent I_P at the output of the receiver.

The photodiode is coupled to a high impedance front-end, characterized by a capacitance $C_T = 5 \text{ pF}$ and a noise figure F = 10 dB. The amplifier introduces a cut-off frequency f_{3dB} equal to 0.75 of the signal bandwidth B, with B = 70 MHz.

- b) Determine the value of the input resistance of the amplifier R_T .
- c) Determine the Signal to Thermal Noise Ratio SNR_J.
- d) Determine the Signal to Shot Noise Ratio SNR_{Sh}.

Assuming now that the PIN photodiode is replaced by an APD diode with gain M and a=1,

- e) Determine the value of M that leads to $SNR_J = SNR_{Sh}$.
- f) For the value of M determined at e), and in absence of incident light, determine the NEP of the receiver, assuming that the dark current is $I_d = 3$ nA.