
Introduction to MATLAB

ACTS Lab

DIET Department

Ultra Wide Band 
Communications

Practice #1 – September 24, 2021



Sapienza Moodle e-learning platform

• Go to 

https://elearning.uniroma1.it/enrol/index.php?id=13670

• Complete enrolment using Sapienza email account.

https://elearning.uniroma1.it/enrol/index.php?id=13670


MATLAB

• MATrix LABoratory -> MATLAB
• Commercial software produced by MathWorks Inc

http://www.mathworks.com/

• How to obtain it
• Since 2017: CAMPUS university-wide license available on InfoSapienza

website:

https://campus3.uniroma1.it/campus/indexlogin.php

• You will need to setup an account at mathworks.com

• If you don’t have a Sapienza email account  yet , you can download a 30 days 
trial here:

https://it.mathworks.com/campaigns/products/trials.html

http://www.mathworks.com/
https://campus3.uniroma1.it/campus/indexlogin.php
https://it.mathworks.com/campaigns/products/trials.html


Matlab online courses

• Matlab On Ramp – short introduction course (2-4 hours)

• Matlab Fundamentals – more extensive course (10 hours)

• Go to

https://matlabacademy.mathworks.com/

And login with you Mathworks account connected to your 
uniroma1.it email address

• Suggested for both beginners and students who already used 
Matlab

https://matlabacademy.mathworks.com/


Starting Matlab

◼ You can start MATLAB by double-clicking on the MATLAB icon or invoking the 
application from the Start menu of Windows (or the Applications menu under 
Linux). 

◼ The main MATLAB window, called the MATLAB Desktop, typically looks as
follows: 

5

Command Window



Typing commands

◼ If you type a command at a command prompt, MATLAB executes the 
command you typed in, then prints out the result. It then prints out another
command prompt and waits for you to enter another command.

◼ In this way, you can interactively enter as many commands to MATLAB as you
want.

◼ To exit MATLAB, simply click the mouse on the File menu of the MATLAB 
command window and then select "Exit MATLAB" (or  just enter quit at the 
MATLAB command prompt).  

6



Getting Help

◼ There are three main functions that you can use to obtain help on a given 
function: help, helpwin (short for help window, provides the same info in a 
pop up window) and doc (short for documentation). 

7

◼ The doc command provides much more information, examples, etc.; it can 
also be invoked by using the search box on the top right of the Matlab IDE



Creating variables (1/4)

◼ Variables are a fundamental concept in MATLAB, and you will use them all the 
time. Basically, a variable is a holding place for a value which you can give a 
name to. The point of this is that, when calculating something new later, you
can use the value that a variable refers to as part of the new calculation. 

◼ You can define and use your own variables, their names will appear in the 
workspace window together with the variables’ characteristics.

◼ Note that the semicolon has the effect to evaluate the expressions without
printing out the results.

8



Creating variables (2/4)

◼ If you don’t create a variable the value of the expression you type in the 
command window is stored in a matlab default variable called ans (short for 
"answer“). You can refer to that value by just typing ans: 

9

◼ ans is overwritten every time you issue a command, so it cannot be used for 
long term storage…



Creating variables (3/4)

◼ Typing clear at the command prompt will remove all variables and values that
were stored in the workspace up to that point. 

10

Note that, after the clear

command that removes all the

variables, the whos command 

cannot find any variable name

to display.

◼ If you want to remove only some of the variables, just type the clear
mcommand followed by the names of the variables to be deleted



Creating variables (4/4)

◼ There are some specific rules for what you can name your variables, so you 
have to be careful. 

❑ Only use primary alphabetic characters (i.e., "A-Z"), numbers, and the 

underscore character (i.e., "_") in your variable names. 

❑ You cannot have any spaces in your variable names, so, for example, using 

"this is a variable" as a variable name is not allowed, but "this_is_a_variable" 

is fine. 

❑ MATLAB is case sensitive. What this means for variables is that the same 

text, with different mixes of capital and small case letters, will not be the same 

variables in MATLAB. For example, "A_VaRIAbLe", "a_variable", 

"A_VARIABLE", and "A_variablE" would all be considered distinct variables in 

MATLAB. 

❑ You can also assign pieces of text to variables, not just numbers. You do this 

using single quotes (not double quotes --- single quotes and double quotes 

have different uses in MATLAB) around the text you want to assign to a 

variable. 

❑ Be careful not to mix up variables that have text values with variables that 

have numeric values in equations. If you do this, you will get some strange 

results. 



Vectors & Matrices (1/5)

◼ Three fundamental concepts in MATLAB, and in linear algebra, are scalars, 
vectors and matrices:

❑ A scalar is simply just a fancy word for a number (a single value).

❑ A vector is an ordered list of numbers (one-dimensional). In MATLAB they can be 
represented as a row-vector or a column-vector.

❑ A matrix is a rectangular array of numbers (multi-dimensional). In MATLAB, a two-
dimensional matrix is defined by its number of rows and columns.

◼ In MATLAB, and in linear algebra, numeric objects can be categorized simply as 
matrix: both scalars and vectors can be considered a special type of matrix. 

◼ For example a scalar is a matrix with a row and column dimension of one (1-by-1 
matrix). And a vector is a one-dimensional matrix: one row and n-number of 
columns, or n-number of rows and one column.

❑ All calculations in MATLAB are done with "matrices". Hence the name MATrix
LABoratory.



Vectors & Matrices (2/5)

◼ In MATLAB matrices are defined inside a pair of square braces ([]). The blank 
space and the semicolon (;) are used to divide elements in a row and different 
rows, respectively
❑ Note: you can also use a comma to divide elements in a row, and a carriage 

return (the enter key) to divide rows. 

13

Directly typed Matrix Row/Column Vectors Matrix by Vectors

Note: You can create a Matrix also

merging two or more existent

matrices.



Vectors & Matrices (3/5)

◼ More often than not, the type of data that you will work with will be vectors.
◼ You can create them manually (as already explained) or by using the colon 

operator, with the following syntax:

START_VALUE:INCREMENT:STOP_VALUE

14

Vector created using the Colon Operator Example of negative increment



Vectors & Matrices (4/5)

◼ Once a vector or a matrix is created you might need to extract only a subset of the 
data, and this is done through indexing. 

◼ In a row vector the left most element has index 1.

◼ In a column vector the top most element has index 1. 

Indexing Vectors

Row Vector

Col. Vector

Indexing Matrices



Vectors & Matrices (5/5)

◼ You can also extract any contiguous subset of a matrix, by referring to the row
range and column range you want. 

◼ For example, if mat is a matrix with 4 rows and 5 columns, then typing
mat(2:4,3:5) would extract all elements in rows 2 to 4 and in columns 3 to 5. 

Matrix subset You can also modify any value in a

matrix or vector indicating its

position and the new value to be

inserted



Element by element operations (1/2)

◼ The element-by-element operators in MATLAB are as follows:

❑ element-by-element multiplication: ".*"
element-by-element division: "./"
element-by-element addition: "+"
element-by-element subtraction: "-"
element-by-element exponentiation: ".^"

el-by-el multiplication (Hadamard product)

el-by-el exponentiation



Element by element operations (2/2)

◼ Element-by-element operators can be used with scalars and vectors together. 

◼ A few examples:

multiplication subtraction division



Multiplication of 2 vectors/matrices

◼ It is represented by the single symbol *
◼ It carries out the well known matrix multiplication (rows by columns)

Vectors

Means “transposed”

Matrices

Note that the number of

rows in A is the same as 

the number of columns 

in B.

◼ CAVEAT:

A*B ≠A.*B



Visualizing data (1/7)

◼ The basic plotting command in Matlab is plot, 

◼ When invoked with two same-sized vectors X and Y, plot creates a two-
dimensional line plot for each point in X and its corresponding point in Y: 

Plot command

Matlab will display the figure in a 

pop-up window, if you decide to save

it the matlab default format is the

.fig format



Visualizing data (2/7)

◼ If you want to label the axes, give your figure a title or create a grid in the 
background of your plot, you can use the xlabel, ylabel, title and grid on command 
respectively:

Plot labels and enhancement



Visualizing data (3/7)

◼ Let’s now plot a parabola introducing the x_axis significant points not one by 
one, but using the shortcut already seen before:

Parabole plotting

Note that we have now

inserted 100 x values in a

very compact way



Visualizing data (4/7)

◼ Superimpose multiple plots in the same figure window allows to easily compare 
the plots. 

◼ This can be done using the hold command. 

◼ Normally, when one types a plot command, any previous figure window is erased, 
and replaced by the new plot. 

◼ If one types "hold on" at the command prompt, all line plots subsequently created 
will be superimposed in the same figure window and axes. 

◼ "hold off" will revert to the default behavior
Plots superimposed



Visualizing data (5/7)

◼ A different way to compare multiple plots is to have each of them in a separate 
part of the window. 

◼ This can be obtained with the subplot command. 

◼ If one types subplot (M,N,P) at the command prompt, MATLAB will divide the 
plot window into a set of rectangles organized in M rows and N columns 

◼ The result of the next "plot" command will appear in the Pth rectangle (where 
the first rectangle is in the upper left):

Subplot



Visualizing data (6/7)

◼ Two different kinds of three-dimensional plots can be displayed in MATLAB: 1) 
three-dimensional line plots and 2) surface mesh plots:

◼ three-dimensional line plots



Visualizing data (7/7)

◼ surface mesh plots: You can use the mesh and meshgrid commands to create 
surface mesh plots, which show the surface of three-dimensional functions:

◼ How it works:

1) Generate a grid of points in the xy-plane using the meshgrid command.
2) Evaluate the three-dimensional function at these points.
3) Create the surface plot with the mesh command.

3-D Parabola

26



Scripts (1/3)

◼ A MATLAB script is an ASCII text file that contains a sequence of MATLAB 
commands.

◼ When naming a script file, one has to append the suffix ".m" to the filename, for 
example "myscript.m". Scripts in MATLAB are also called "M-files”.

◼ The commands contained in a script file can be run in the MATLAB command 
window by typing the name of the file at the command prompt.

◼ You can use any text editor, such as Microsoft Windows Notepad, or word 
processor, such as Microsoft Word, to create scripts, but you must make sure 
that you save scripts as simple text documents.

◼ It is much easier to create your scripts using MATLAB's built-in text editor.

◼ To start the MATLAB text editor simply type edit at the command prompt or 
select File->New->M-file from the MATLAB desktop menu bar.

◼ The MATLAB text editor provides syntax highlighting, making easier to read the 
script, as well as the possibility of running and debugging the code



Scripts (2/3)

◼ Example: the following script generating a parabola created using MATLAB's built-
in text editor. The name of the script is parab1.m:

If the script is saved in a 

directory included in the

Matlab path it can be

run by simply typing 

parab1 at the Matlab 

command prompt

Script edited using Matlab editor

28



Scripts (3/3)

❑Comments in scripts help understanding the code

❑A comment can be placed anywhere in a script with the % sign



Functions

◼ Functions are M-files that can accept input arguments and return output

arguments. The names of the M-file and of the function should be the same.

◼ Functions operate on variables within their own workspace, separate from the 
workspace you access at the MATLAB command prompt.

Function squarebin Running squarebin



Saving variables (1/2)

◼ The save command can be used to save all or only some of your variables into a 
MATLAB data file type called MAT-file. If you want to choose the name of the file 
yourself, you can type “save” followed by the filename you want to use. MATLAB 
will then save all currently defined variables in a file named with the name you 
chose followed by the suffix ".mat" 

◼ Before saving you have to specify the path to where you want Matlab to save your 
variables or simply change the current directory if you need to. To know which 
directory is the current one just type the PWD command.

◼ To see if your .mat file is where it should be you can use the dir command which 
lists the file of the current directory.

◼ If you want to save only a limited number of variables within your workspace just 
type their names after the save command and the filename.



Saving variables (2/2)

◼ Saving steps:



Loading variables

◼ Saved variables can be retrieved with the load command followed by a filename
(without the ".mat" suffix):



Adding a folder to the path

◼ To add a folder to the Matlab search-path simply select:

file→set path→ add folder→(select a folder)→save

or use the addpath command followed by the complete folder path



if, then and elseif

if <expression>

<statement>, 

<statement>,…

elseif <expression>

<statement>, 

<statement>,…

else

<statement>, 

<statement>,…

end

The general form of the if statement is:

a=3;

b=floor(5*rand(1,1));

if a>b

fprintf('a=%d larger than b=%d/n',a,b);

elseif a==b

fprintf('a=%d equal to b=%d/n',a,b);

else

fprintf('a=%d smaller than b=%d/n',a,b);

end

Example



For and While

N=5;

M=8;

for i=1:N

for j=1:M

A(i,j)=1/(i+j-1);

end

end

for <variable=expression> 

<statement>, <statement>,… end

b=0;

a=10;

while (a>3)

b=b+1;

a=a-b;

end

while <expression> <statement>, 

<statement>,… end



Function “rand”

•rand uniformly distributed random numbers.

•rand(N) is an N-by-N matrix with random entries, chosen from a uniform 
distribution on the interval (0.0,1.0).

•rand(M,N) is a M-by-N matrix with random entries on the same interval.

octave-3.2.3:8> V=rand(3)

V =

0.885006   0.985149   0.193368

0.060968   0.912635   0.719775

0.894609   0.040091   0.480421

octave-3.2.3:9> W=rand(1,3)

W =

0.50589   0.70535   0.15719



Function “zeros”

•zeros zeros array.

•zeros(N) is an N-by-N matrix of zeros. 

•zeros(M,N) is an M-by-N matrix of zeros.

octave-3.2.3:9> W=zeros(1,3)

W =

0   0   0

octave-3.2.3:8> V=zeros(4)

V =

0 0  0  0

0 0  0  0

0 0  0  0

0 0  0  0



Function “ones”

•ones Ones array.

•ones(N) is an N-by-N matrix of ones 

•ones(M,N) is an M-by-N matrix of ones.

octave-3.2.3:9> W=ones(1,3)

W =

1   1   1

octave-3.2.3:8> V=ones(4)

V =

1 1  1  1

1 1  1  1

1 1  1  1

1 1  1  1



Function “find”

◼ find Finds indices of nonzero elements.
◼ I = find(X) returns the indices of the vector X that are non-

zero.
◼ Note that X can be the result of the evaluation of an expression
◼ Example:

octave-3.2.3:17> A=floor(200*rand(1,10))

A =

83   142    81    69   119     3    36    87    10    88

octave-3.2.3:18> X=A>100

X =

0   1   0   0   1   0   0   0   0   0

octave-3.2.3:19> I=find(X)

I =

2   5

octave-3.2.3:20>



Function “length”, “max” e “min”

length:  Length of vector.
•For a vector, length(X) returns the number of elements in X.
•For a matrix NxM, length(X) returns the largest dimension between N and M.

max: Largest component.
•For a vector, max(X) returns the largest element in X.
•For a matrix, max(X) returns a row vector containing the largest element of each 
column in X.

min: Smallest component.
•For a vector, min(X) returns the smallest element in X.
•For a matrix, min(X) returns a row vector containing the smallest element of each 
column in X.



Function “sort” (1/2)

sort:  sorts the elements of a vector in ascending or descending order
•For a vector, sort(X) sorts the elements of X in ascending order.
•For a matrix, sort(X) sorts the elements of each column of X in ascending order.

>> V=[7 5 9 2 4];

>> sort(V)

ans =

2     4     5     7     9

>> 

>> A=[7 5 2; 4 3 5; 9 8 3]

A =

7     5     2

4     3     5

9     8     3

>> sort(A)

ans =

4     3     2

7     5     3

9     8     5

>>



Function “sort” (2/2)

The default behavior of sort can be modified with additional inputs
•sort(A,dim) sorts the elements of a matrix A in ascending order by dimension 
dim (dim=1: columns (default), dim=2: rows).
•sort(A,’descend’) sorts each column of a matrix A in descending order
•sort(A,2,’descend’) sorts each row of a matrix A in descending order

>> A=[0 23 12; 5 3 6]

A =

0   23   12

5    3    6

>> sort(A,2)

ans =

0   12   23

3    5    6

>> 

>> A=[0 23 12; 5 3 6]

A =

0   23   12

5    3    6

>> sort(A,2,’descend’)

ans =

23   12   0

6    5    3

>>



Function “round”, “ceil” e “floor”

•round: Round towards nearest integer.

•floor: Round towards the integer immediately lower.

•ceil: Round towards plus the integer immediately higher.

octave-3.2.3:30> test= [0.4 0.7]

test =

0.40000   0.70000

octave-3.2.3:31> round(test)

ans =

0   1

octave-3.2.3:32> floor(test)

ans =

0   0

octave-3.2.3:33> ceil(test)

ans =

1   1

octave-3.2.3:34> 



Function “size”

size:   Size of each dimension of a    vector/matrix

•For vectors, same as length
•For matrices, different behavior

>> A=[7 5 2; 4 3 5;]

A =

7     5     2

4     3     5

>> size(A)

ans =

2     3

>> length(A)

ans =

3

>> size(A,1)

ans =

2



Function “sum”

sum:  Sum of elements of a vector/matrix

•For vectors, it returns the sum of all elements

•For matrices, it returns a row vector 
containing the sums of the elements of each 
row

•Behavior for matrices can be changed as seen 
for the sort command

>> V=[1 2 3]

V =

1     2     3

>> sum(V)

ans =

6

>> A=[1 2 3; 2 4 6]

A =

1     2     3

2     4     6

>> sum(A)

ans =

3     6     9

>> sum(A,1)

ans =

3     6     9

>> sum(A,2)

ans =

6

12



Function “bar”

bar:  Bar graph
•Typically used when the values are not samples of a function

>> V=[8 9 10 6 4 3];

>> bar(V)

>> title('Bar graph title')

>> xlabel('Categories')

>> ylabel('Values')

>>


