Practice #3 – October 01, 2020

Ultra Wide Band Radio Fubndamentals

Introduction to UWB

DIET Department

Outline

UWB vs non-UWB: review

Generate waveforms, BW Computations

Define: UWB vs non-UWB signals

Proposed exercises

Definition of UWB signal

A base-band (radio-frequency) signal x (t) is UWB iff:

$$\begin{array}{ll} \rho_{\text{FB}} \geq \rho_{\text{FBth}} = 0.2 & \text{if } f_{\text{c}} \leq f_{\text{th}} = 2.5 \, [\text{GHz}] \\ \text{B} \geq \text{B}_{\text{th}} = 0.5 \, [\text{GHz}] & \text{if } f_{\text{c}} > f_{\text{th}} = 2.5 \, [\text{GHz}] \end{array}$$

(ロ) (部) (注) (モ) (モ) (モ) (の)

where: ρ_{FB} = B/f_c is the fractional bandwidth;

B is the bandwidth;

 f_c is the center (carrier) frequency.

Historically there have been several definitions with different parameter settings.

According to (DARPA, 1990):

- > the bandwidth is taken @ -20 dB,
- $\rho_{\rm FBth} = 0.25,$
- $f_{th} = 6 \text{ GHz}$ (that leads to 1.5 GHz of bandwidth limit).

According to (FCC, 2002):

- > the bandwidth is taken @ -10 dB,
- $\rho_{\rm FBth} = 0.2,$
- $f_{th} = 2.5 \text{ GHz}$ (that leads to 0.5 GHz of bandwidth limit).

In the following, we will use the FCC definition.

(FCC, 2002) definition

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ シュ @

Outline

UWB vs non-UWB: review

BW Computations

UWB vs non-UWB

Proposed exercises

BW Computations CHECKPOINT 1–1

Generate two waveforms, both rect:

- 1. in BB @ $f_c = 0$ Hz,
- 2. in RF @ $f_c = 1$ KHz.

[signal, sample_time] =

genrect_mod(time_width,samples_number,carrier_freq)

◆□ > ◆ □ > ◆ □ > ◆ □ > ○ □ ○ ○ ○ ○

BW Computations CHECKPOINT 1–1

Input given:

- 1. width $t = 100 \, \text{ms}$,
- 2. points = 1000.

BW Computations CHECKPOINT 1–1

Compute the bandwidths of the previous signals.

[frac_B, fH, fL] = bandwidth_mod(signal, sample_time, th)

◆□> ◆□> ◆三> ◆三> ・三> ・シスペ

BW Computations CHECKPOINT 1–1

Compute the bandwidths of the previous signals, given:

- 1. signal = rect_A or rect_B
- 2. dt = dt_A or dt_B (dt = width/points)
- 3. threshold = -3 (dB)

BW Computations CHECKPOINT 1–1

Single-sided ESD of rect_A and rect_B

LUWB vs non-UWB

Outline

UWB vs non-UWB: review

BW Computations

UWB vs non-UWB

Proposed exercises

(ロ) (個) (E) (E) (E) (の)(C)

UWB vs non-UWB CHECKPOINT 1-2

Generate two sinusoidal modulated signals with rect envelope, *fixing* the number of cycles N_c and:

A. The *time duration* T_p of the rect.

B. The *frequency* F_p of the sinusoid.

The BW can be computed with the coarse $2/T_p$ rule-of-thumb.

UWB vs non-UWB CHECKPOINT 1-2

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへぐ

UWB vs non-UWB CHECKPOINT 1–2

- > CASE A: time-fixed (Nc defines the frequency of the sinusoid):
 - 1. $T_p = 10 \text{ [ns]}, N_c = 8,$
 - 2. $T_p = 10 \text{ [ns]}, N_c = 16.$
- > CASE B: freq-fixed (Nc defines the time duration of the sinusoid) :
 - 1. $F_p = 0.8$ [GHz], $N_c = 8$,
 - 2. $F_p = 0.8$ [GHz], $N_c = 16$.

Additional input parameters:

- smp = 1000 (number of samples for each sinusoid cycle)
- A = 1 pulse amplitude [V]

UWB vs non-UWB CHECKPOINT 1–2

> CASE A: time-fixed $(N_c = 8)$

◆□ > ◆ □ > ◆ □ > ◆ □ > □ = ● の Q @

UWB vs non-UWB CHECKPOINT 1-2

Isit UWB?

Answers.

> CASE A: time-fixed:

1.Y/N?

2.Y/N?

> CASE B: freq-fixed:

1.Y/N?

2.Y/N?

Proposed exercises

Outline

UWB vs non-UWB: review

BW Computations

UWB vs non-UWB

Proposed exercises

Proposed exercises

Proposed exercises

Exercise (UWB vs non-UWB)

Find the maximum number of cycles N_c allowed to produce a UWB signal with $F_p = 3.1$ [GHz].

Hints:

- 1. $1 \le N_c \le 16$, BW_th = 500 MHz
- 2. improve the module, name it as sinpulse_freq_fixed_impr.

(ロ) (部) (注) (モ) (モ) (モ) (の)