Practice #4 – October 08, 2021

Ultra Wide Band Radio Fundamentals

Generation of UWB Signals

DIET Department

Outline

The UWB radio signal: an overview

UWB TXs

Outline

The UWB radio signal: an overview

UWB TXs

UWB radio signals

- Generation of a UWB signal:
 - 1. IR-UWB: very short pulse width + spreading code

- TH (Time-Hopping),
- · DS (Direct-Sequence);
- 2. non IR-UWB: very high data rate
 - OFDM,
 - MC-CDMA.

In the following, analysis of the IR-case.

The UWB pulse shape

A suitable shape for UWB signals is the **monocycle** (= 1st derivative of a gaussian).

The classical gaussian shape is:

$$g(t) := \mathcal{N}(0, \sigma^2)(t) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{t^2}{2\sigma^2}\right)$$

Who is in general the *n*-th order derivative?

It can be shown by means of mathematical induction principle that:

$$\frac{d^n}{dt^n}g(t) = \frac{(-1)^n}{\sigma^n} \operatorname{H}_n\left(\frac{t}{\sigma}\right)g(t), \quad n \in \mathbb{N}$$

where $H_n(\cdot)$ is the *n*-order Hermite polynomial, defined recursively as follows:

$$\begin{cases} H_0(x) = 1, \\ H_1(x) = x, \\ H_{n+1}(x) = x H_n(x) - n H_{n-1}(x). \end{cases}$$

イロト (日本) モント モント 日 うらの

Let be $\sigma^2 = \tau^2/(4\pi)$: then,

- the **monocycle** is g'(t);
- the **doublet** is g''(t).

Exercise 1 (Pulse Shape Generator)

Write the module

p = gaussian_wf(sample_freq, duration, tau, n)

that returns the *n*-th derivative **p** of a gaussian pulse with shapeparameter **tau**, at least for cases n=1,2.

Settings:

- fc = 10e10; % Sampling Frequency [Hz]
- Tm = 0.9e-9; % Pulse Duration [s]
- tau = 0.2e-9; % Shape Factor
- n = 1,2; % Order of derivative

Figure 1: n=1 (monocycle) vs. n=2 (doublet)

・ ヨーのへの

Outline

The UWB radio signal: an overview

UWB TXs

(ロ) (個) (E) (E) (E) (の)(C)

2PPM-TH-UWB

CHECKPOINT 2-1

Provide an implementation of a 2PPM-TH-UWB TX:

```
Exercise 2 (PPM-TH)
```

[data, c, signal, TH_signal] = TX_BPPM_TH(... num_bits, Ns, smp_freq, Tc, Ts, ... Np, Nh, dPPM, IR_d, tau, powdBm).

with:

- num_bits: bitstream length,
- Ns: channel coder rep factor,
- smp_freq: sampling freq,
- Tc: chip time,
- Ts: frame time,

- Np: TH code length,
- Nh: code max value,
- dPPM: PPM dither,
- IR_d: gaussian pulse duration,
- tau: shape-parameter,
- ► powdBm: avg tx power.

2PPM-TH-UWB CHECKPOINT 2–1

Provide an implementation of a 2PPM-TH-UWB TX:

```
Exercise 2 (PPM-TH)
```

[data, c, signal,	<pre>TH_signal] = TX_BPPM_TH(num_bits, Ns, smp_freq, Tc, Ts, Np, Nh, dPPM, IR_d, tau, powdBm),</pre>
numbits = 2;	% bitstream length
Ns = 3;	% channel coder repetition factor
Np = 3;	% Time Hopping code length
Nh = 3;	% code max value
Tc = 1e-9;	% Chip time
Ts = 5e-9;	% frame time
dPPM = 0.2e-9;	% PPM shift
IR_d=Tm = 0.9e-9;	% Pulse Duration [s]
powdBm = -30;	% avg Tx Power [dBm], 🖓 🖓 🖓 👘 👘 🚊 🦂

Remind: Transmission scheme for a PPM-TH-UWB signal

(ロ) (部) (注) (モ) (モ) (ホーマン)

Remind:Transmission scheme for a PPM-TH-UWB signal

Split the TX in the following parts:

- data = binary_source(num_bits),
- rep_data = channel_coder(Ns,data),
- c = TH_code_generator(Nh,Np),
- [PPM_TH_seq, TH_seq] = BPPM_TH_mod(... rep_data,smp_freq,Tc,Ts,dPPM,c),
- p = gaussian_wf(smp_freq,duration,tau,order).

The following scheme is useful in the 2PAM-DS-UWB case too.

★ロ> ★母> ★目> ★目> 目 のQQ

2PAM-DS-UWB CHECKPOINT 2-2

Provide an implementation of a 2PAM-DS-UWB TX:

There are few differences with respect to the TH-UWB case.

- ac = DS_code_generator(Nh,Np),
- [PAM_DS_seq, DS_seq] = BPAM_DS_mod(a, smp_freq, Ts, c).

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ