Practice #6 – October 22, 2020

Ultra Wide Band Radio Fundamentals

Link Budget

DIET Department

(ロ) (部) (注) (モ) (モ) (モ) (の)

Outline

Link budget in short

PSD and BW of interest

◆□> ◆□> ◆臣> ◆臣> 善臣 のへで

SNR and modulation

Simulation time!

Outline

Link budget in short

PSD and BW of interest

SNR and modulation

Simulation time!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の��

Link budget in short

1. What: **Determine the maximum distance** of propagation at a given bit rate under a maximum BER constraint for the UWB point-to-point link.

2. Why: **Coexistence** with other radio signals requires compliance with emission masks regulated by the FCC.

(ロ) (部) (注) (モ) (モ) (モ) (の)

Ŷ

Link Budget Formula (1/2)

The BER constraint can be seen as an SNR constraint, thus:

$$\begin{split} \text{SNR}_0 &\leq \text{SNR} = \frac{\mathscr{C}_r}{\mathscr{C}_N} = \frac{\mathscr{P}_r \ T_b}{\frac{1}{2} \ K \ T_0 F}.\\ \text{System margin}\\ \text{SNR} \ / \ \text{SNR}_0 &=: \ M \geq 1 \qquad \mathscr{P}_r \ \text{is the available received power}\\ \text{PSD of Tx signal}\\ F &= \int_{f_L}^{f_H} \frac{2 \mathscr{S}_{pp}(f)}{A_{fs}(f)} df \qquad A_{fs}(f) = \frac{4 \pi D^2}{G_T \ G_R} \frac{4 \pi}{\lambda^2}, \ \lambda = c/f. \end{split}$$

Remind from lecture:

1. Required energy at the receiver

$$E_{r} = M \cdot SNR_{spec} \cdot E_{noise}$$

$$F_{r} = M \cdot SNR_{spec} \cdot \frac{1}{2} k (Temp_{A}^{r} + (F(f) - 1)Temp_{0}))$$

$$F_{r}T_{b} = M \cdot SNR_{spec} \cdot \frac{1}{2} k (Temp_{A} + (F(f) - 1)Temp_{0}))$$

$$F_{r}T_{b} = M \cdot SNR_{spec} \cdot \frac{1}{2} k (Temp_{A} + (F(f) - 1)Temp_{0}))$$

$$P_{r} = \frac{E_{r}}{T_{b}} = \frac{M SNR_{0}E_{N}}{T_{b}}$$
2. Received
$$P_{r} = 2\int_{f_{L}}^{f_{H}} \frac{P_{s}(f)}{A_{FS}(f)} df = 2\int_{f_{L}}^{f_{H}} \frac{P_{s}(f)}{(4\pi)^{2}D^{2}f^{2}} df$$

 $P_{s}(f)$ double-sided transmitted power spectral density $A_{FS}(f)$ Free-space attenuation

Link Budget Formula (2/2)

Solving in D:

$$D = \left[\frac{G_T G_R \left(\frac{c}{4\pi}\right)^2 T_b}{M \operatorname{SNR}_0 \mathscr{E}_N} \int_{f_L}^{f_H} \frac{2\mathscr{S}_{pp}(f)}{f^2} df\right]^{1/2}$$

Thus, the maximum link distance depends upon the:

- **1.** bit rate: T_b with $D \propto 1/\sqrt{R_b}$
- **2.** PSD of Tx signal and BW of interest: $\mathscr{S}_{pp}(f)$ and $[f_L, f_H]$

イロト (日本) モート (日本) 日 うらの

3. min SNR to achieve the fixed BER: SNR₀

Outline

Link budget in short

PSD and BW of interest

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の��

SNR and modulation

Simulation time!

Choose the signal to transmit (1/2)

CASE 1. We transmit the 5th derivative of a gaussian pulse. You can accomplish this task in many ways:

1. writing the PSD directly*, with *N* = 5:

$$\mathscr{S}_{pp}(f) = A_{max} \frac{(2\pi f\sigma)^{2N}}{N^{N} \mathrm{e}^{-N}} \mathrm{e}^{-(2\pi f\sigma)^{2}}$$

where:

- A_{max}=10^{-13.15} W/Hz
- sigma=51 ps
- fMax = 30 GHz
- 2. using the function gaussian_wf then computing the PSD.

*[According to (Sheng et al., 2003)].

Choose the signal to transmit (1/2)

Why the 5th derivative?

Choose the signal to transmit (2/2)

CASE 2. We transmit an ideal signal that fully exploit the 3.1–10.6 GHz bandwidth of the FCC mask.

The PSD of the signal is the mask itself, in that range.

NB: verify that the total power of the signal is 0.55 mW.

(ロ) (部) (注) (モ) (モ) (モ) (の)

Choose the signal to transmit (2/2)

CASE 2. We transmit an ideal signal that takes full advantage of the 3.1–10.6 GHz bandwidth of the FCC mask.

Frequency in MHz	<i>EIRP_{mb}</i> in dBm
0–960	-41.3
960–1610	-75.3
1610-1990	-53.3
1990–3100	-51.3
3100-10600	-41.3
Above 10600	-51.3

Outline

Link budget in short

PSD and BW of interest

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の��

SNR and modulation

Simulation time!

M–PAM and M–PPM probability of error in AWGN channel

M-PAM

$$\Pr_{e}^{PAM} = \left(1 - \frac{1}{M}\right) \operatorname{erfc} y \quad \text{with} \quad y^{2} = \frac{3 \log_{2} M}{M^{2} - 1} \frac{\mathscr{E}_{b}}{N_{0}}$$

M-PPM

$$\Pr_{e}^{PPM} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ 1 - \left[1 - \frac{1}{2} \operatorname{erfc}\left(\frac{\eta + m}{\sqrt{2}}\right) \right]^{M-1} \right\} e^{-\eta^{2}/2} d\eta$$

with $m = \sqrt{2 \log_2 M \mathcal{E}_b / N_0}$.

◆ロ → ◆回 → ◆ 三 → ◆ 国 → ◆ ○ ◆

M–PAM and M–PPM

M–PPM approximation (tight for Eb/N0>4.43 dB)

Simulation time!

Outline

Link budget in short

PSD and BW of interest

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の��

SNR and modulation

Simulation time!

Simulation time! (1/3)

We shall write a script that, given a specified symbol $\rm Pr_{e}$, returns the minimum required $\rm E_{b}/\rm NO.$

The function declaration could be:

EbN0=getEbN0 (MOD, M, Pre)

with:

- MOD (modulation type): 1 (PAM), 2 (PPM)
- M (bit per symbol)
- Pre (symbol probability of error): 1e-3
- Range of E_b/N₀: 0-20dB

Simulation time! (2/3)

The core link-budget routine, that computes the maximum link distance, is the follow.

The function declaration could be:

D=distcmpt(EbN0min, Gt, Gr, MdB, FdB, Rb, PSDss,BOI)

with:

- EbN0min: required Eb/N0
- Gt: tx antenna gain
- Gr: rx antenna gain
- MdB: system margin in dB

- FdB: rx noise figure
- Rb: bit rate
- PSDss: single sided PSD
- BOI: bandwidth of Interest

Simulation time!

Simulation time! (3/3)

```
Parameters for function distempt:
```

```
EbN0min: just computed MdB = 5 dB
Gt = 1 Rb = [1, 20:20:200] Mb/s
Gr = 1 f_MAX= 30 GHz
FdB = 7 dB
```

We will consider two cases for the bandwidth of interest and PSD :

- Case 1:
 - PSDss: SS-PSD of 5th deriv. of Gaussian Pulse
 - BOI obtained as the -3 dB bandwidth of the pulse
- Case 2:
 - PSDss: FCC mask
 - BOI = 3.1 10.6 GHz

Simulations time!

Results: case 1 - gaussian pulse, Mod = 1 (PAM)

Simulations time!

Results: case 2 - ideal signal, Mod = 1 (PAM)

