Ultra Wide Band Radio Fundamentals

UWB Receivers in AWGN channels

DIET Department

(ロ) (部) (注) (モ) (モ) (モ) (の)

Outline

Channel model

Simulation time!

Results

LChannel model

Outline

Channel model

Simulation time!

Results

Framework (1/3)

Channel model hypothesis

- > multipath-free
- > AWGN (and any other gaussian interference)
- amplitude gain: $\alpha = c_0 / \sqrt{D^{\gamma}}$, so $\alpha \equiv c_0 @ D = 1[m]$.

Optimum receiver (for AWGN channels)

- → **Correlator**: it correlates *r* (*t*), the rx noisy signal (*input*), with the orthonormal waveforms $(\psi_i)_{i=0}^{N-1}$ of the signal space basis, giving a vector **Z** ∈ R^N of decision variables (*output*).
- Detector: it decides which waveform was transmitted by applying the ML criterion, i.e. by maximizing p(Z|s(t)).

Framework (2/3)

Two decision detection strategies may be used in case of multi-pulse signals:

- > **SOFT**: only one decision based on the whole multi-pulse signal ($SNR_{mp} = N_s SNR_{sp}$)
- HARD: N_s independent decisions (each with error probability p), and final decision obtained by applying a majority criterion, leading to:

$$P_e = \sum_{k=N_s/2}^{N_s} {N_s \choose k} p^k (1-p)^{N_s-k}$$

LChannel model

Framework (3/3)

AWGN Channel

Simulation time

 $\frac{\text{channel}}{\text{delay}} \tau = \frac{D}{c}$

Remind: Multipath-free Received UWB radio channel s(t)r(t)Transmitted signal plus AWGN **UWB** signal distance D noise $r(t) = r_u(t) + n(t) \text{ Received signal}$ $r(t) = \alpha s(t - \tau) + n(t) \qquad n(t) \text{ of }$ Thermal noise: realization n(t) of a stochastic Gaussian process with bilateral PSD $N_0/2$ Reference channel gain C_0 channel $\alpha = \frac{c_0}{\sqrt{D^\gamma}}$ at distance D = 1 m

- Path-loss exponent γ
- speed of light in vacuum C

イロト (日本) モント モント 日 うらの

AWGN Channel

└─Simulation time!

Remind: Case 1: single-pulse PPM signals

2PPM-TH receiver architecture based on a single correlator

Remind: Case 2: multi-pulse PPM signals with <u>Soft Decision</u> Detection

In <u>soft decision detection</u>, the signal formed by N_S pulses is considered as a single multi-pulse signal $s_{mp}(t)$

Transmitted
waveform
$$s_{mp}(t) = \begin{cases} \sqrt{N_s E_{TX}} \sum_{j=0}^{N_s - 1} \frac{1}{\sqrt{N_s}} p_0(t - jT_s - c_jT_c) & \text{for } b = 0 \\ \sqrt{N_s E_{TX}} \sum_{j=0}^{N_s - 1} \frac{1}{\sqrt{N_s}} p_0(t - jT_s - c_jT_c - \varepsilon) & \text{for } b = 1 \end{cases}$$

イロト (日本) モント モント 日 うらの

Received waveform

$$r(t) = \alpha s_{mp}(t - \tau) + n(t)$$

Remind: Case 2: multi-pulse PPM signals with Soft Decision Detection

2PPM-TH receiver architecture based on a single correlator

$$r(t) \xrightarrow{m(t-\tau)} \int_{\tau}^{T_{b+\tau}} dt \xrightarrow{Z > 0 \Rightarrow \hat{b} = 0} \hat{b}$$

$$Z < 0 \Rightarrow \hat{b} = 1$$

(ロ) (部) (主) (主) (三) の(の)

$$m(t) = \frac{1}{\sqrt{N_s}} \sum_{j=0}^{1} \left(p_0 (t - c_j T_c) - p_0 (t - c_j T_c - \varepsilon) \right)$$

$$Z = \begin{cases} +\sqrt{N_{S}E_{RX}} (1 - R_{0}(\varepsilon)) + (n_{0} - n_{1}) & \text{for } b = 0 \\ -\sqrt{N_{S}E_{RX}} (1 - R_{0}(\varepsilon)) + (n_{0} - n_{1}) & \text{for } b = 1 \end{cases}$$

Remind: Case 3: multi-pulse PPM signals with <u>Hard Decision</u> Detection

- In <u>hard decision detection</u>, the receiver implements N_S independent decisions over the N_S pulses that represent one bit.
- The final decision is obtained by applying a simple majority criterion.
- It can be shown that soft decision outperforms hard decision when considering propagation over AWGN channels

$$\Pr_{b} = \sum_{j=\left\lfloor\frac{N_{s}}{2}\right\rfloor}^{N_{s}} {\binom{N_{s}}{j}} \Pr_{b_{0}}^{j} \left(1 - \Pr_{b_{0}}\right)^{N_{s}-j} \qquad \Pr_{b_{0}} = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{1}{2} \frac{E_{RX}}{\mathcal{N}_{0}} \left(1 - R_{0}(\varepsilon)\right)}\right)$$

Outline

Channel model

Simulation time!

Results

<□> <□> <□> <三> <三> <三> <三> <三> <三</td>

Schematic

<ロ>

Routines (1/2)

- To implement the transmission blocks, you will use the old routines for the generation of PPM signals (see PW03)
- You will have to write functions for channel and receiver:

[sRX, alpha] = pathloss(sTX, c0, d, gamma)

It implements the pathloss formula (where sTX is the PPM-TH signal obtained from the function TX_BPPM_TH, while alpha is the amplitude gain of the channel)

$$\label{eq:srxwn} \begin{split} [srxwn, noise] &= \texttt{gnoise} (srxwon, ExN0dB, n_pulses_tot) \\ It adds noise with suitable power to attain the desired E_b/N_0: if $N_s > 1$, then $E_x/N_0 = E_b/(N_s N_0)$. \end{split}$$

Routines (2/2)

mask = corrmask(ref, smp_freq, num_pulses, dPPM)

It performs two tasks:

- energy normalization of ref signal (that is the TH-code signal from TX_BPPM_TH),
- 2) mask creation, by evaluating ref-sref, where sref is a version of ref delayed by dPPM.

[RXbits,BER] = mod_receiver(sRx,mask, smp_freq, bits, Ns, Ts, mod, DDT)

It takes decisions and measures the BER. The function should implement both types of detection:

- DDT=1: hard detection
- DDT=2: soft detection

Input parameters:

```
c0= 10^(-30/20); %gain @1 m
d= 10; %[m]
gamma=2;
mod= 1;%PPM or mod=2%PAM
```

```
smp freq = 50e9;
nBits = 20000:
Ts = 3e - 9;
Ns = [1 3];
Tc = 1e-9;
Nh = 3;
Np = 60000;
IR d = 0.5e-9;
tau = 0.25;
dPPM = 0.5e-9;
SNRb dB = 0:2:10;
powdBm = -30;
```

└_ Results

Outline

Channel model

Simulation time!

Results

└_ Results

Expected result

Questions

You should be able to answer to the following questions:

- 1. What is the effect of N_s on P_e ?
- 2. What is the performance difference between soft and hard detection schemes?

(ロ) (部) (注) (モ) (モ) (モ) (の)