Ultra Wide Band Radio Fundamentals

Pulse Shaping

DIET Department

Outline

Gaussian envelope: properties

Meeting the emission mask via random selection via LSE minimization

Outline

Gaussian envelope: properties

Meeting the emission mask via random selection via LSE minimization

Gaussian envelope

The PSD envelope is deeply affected by the pulse shape.
There are three ways for spectral shaping:
, pulse width variations,
, pulse differentiation,
, combination of base functions.

Due to the extremely shortness of pulses, no modulation is allowed.

The easiest and cheapest pulse is abell-shaped pulse combined with its derivatives.

Gaussian pulse shape: time domain

The classical gaussian shape is:

$$
g(t):=\mathcal{N}\left(0, \sigma^{2}\right)(t)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

It can be shown by means of mathematical induction principle that:

$$
\frac{d^{n}}{d t^{n}} g(t)=\frac{(-1)^{n}}{\sigma^{n}} \mathrm{H}_{n}\left(\frac{t}{\sigma}\right) g(t), \quad n \in \mathbb{N}
$$

Let be $\sigma^{2}=\alpha^{2} / 4 \pi$, with shape factor α : then,
> the monocycle is $\mathrm{g}^{\prime}(\mathrm{t})$;
> the doublet is g " (t).

Gaussian pulse waveform

Energy Spectral Density

Analytical expression of a Gaussian pulse

$$
p(t)= \pm \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}}= \pm \frac{\sqrt{2}}{\alpha} e^{-\frac{2 \pi t^{2}}{\alpha^{2}}}
$$

$$
\alpha^{2}=4 \pi \sigma^{2} \text { is the shape factor }
$$

Exercise 1.1: Check the effect of shape factor on pulse waveform and

 corresponding ESDWrite the function:
shape_factor_variation(alphamin, alphamax, N_alphavalues)

Settings

- alphamin $=0.4 e-9$
- alphamax = 1e-9
- N_alphavalues = 7
- $A=1$ \%pulse amplitude
- $\operatorname{smp}=1024$ \%number of samples
- Tmin $=-4 e-9$ \%lower time interval limit
- Tmax $=4 e-9$ \%upper time interval limit

Pulse Shaping
_Gaussian envelope: properties

Exercise 1.1: results

Exercise 1.2: Check the effect of differentiation:

Represent waveforms and ESDs for the 15 first derivatives

- alpha $=0.714 \mathrm{e}-9$
* Plot $f_{\text {peak }}$ as a function of alpha, for 15 derivatives. Verify that the maximum of the spectrum is reached at:

$$
f_{p e a k, k}=\sqrt{k} \frac{1}{\alpha \sqrt{\pi}}
$$

* Verify that the bandwidth @ - 10 dB is only slightly dependent on derivative's order by plotting $\mathrm{BW}_{-10 \mathrm{~dB}}[\mathrm{~Hz}]$ as a function of alpha, for 15 derivatives.

Exercise 1.2: Check the effect of differentiation

Hints

* In time and frequency with 15 first derivatives

HINT: create the functions:
Gaussian_derivatives(alpha)
Gaussian_derivatives_ESD (alpha)
max of the spectrum is reached at $f_{\text {peak, }, k}=\sqrt{k} \frac{1}{\alpha \sqrt{\pi}}$ HINT: create the function:
[peakfrequency]=Gaussian_derivatives_peak_frequency(alphamin, alphamax, N_alphavalues)

* Plot the bandwidth @ -10 dB as a function of alpha: HINTS: - create a function:
Gaussian_derivatives_10dB_bandwidth(alphamin, alphamax, N_alphavalues)
- use the routine bandwidth mod.

Gaussian envelope: properties

Exercise 1.2: results

Gaussian envelope: properties

Exercise 1.2: results on ESDs

Gaussian envelope：properties

Exercise 1．2：results on peak frequency

Exercise 1.2: results on peak frequency as a function of the derivation

 order

Gaussian envelope: properties

Exercise 1.2: results on -10 dB bandwidth

Meeting the emission mask

Outline

Gaussian envelope: properties

Meeting the emission mask
via random selection
via LSE minimization

Meeting the emission mask
Remind: Combining pulse width variation and differentiation

- Pulse width variation and differentiation allow to modify the PSD of the emitted signal
- A single waveform $p(t)$ does not allow to achieve efficient power use at all frequencies
- A set of different waveforms $p_{k}(t)$ (each corresponding to a different derivative with a different shape factor a_{k}) can be used to increase efficiency

Meeting the emission mask

Problem: choose $\left\{a_{k}\right\}_{k=0}^{M-1}$ such that the ESD of tx pulse

$$
p(t)=\sum_{k=0}^{M-1} a_{k} p_{k}(t)
$$

is as close as possible to the mask.
Possible approaches:
, via random selection
, via LSE

Meeting the emission mask

VIA RANDOM SELECTION

Exercise 2.1: Write a script/ function
[c, singlederiv, analyticalderiv, validresult, df] = random_pulse_combination(i,Ts,attempts)

Purpose: The function yields the best coefficient set within the sets found during the 'attempts' iterations and the best coefficient for the solutions based on each single derivative

Returns:

1) the best coefficient set ' c '
2) the coefficients for the set formed by each single derivative 'singlederiv'
3) the set of analytical derivatives in time 'analyticalderiv'
4) a flag on the validity of the returned vectors 'validresult'
5) the fundamental frequency df

Meeting the emission mask

VIA RANDOM SELECTION

Exercise 2.1: Write a script/ function
[c, singlederiv, analyticalderiv, validresult, df] = random_pulse_combination(i,Ts,attempts)

Settings:

1) the index ' i ' indicating which setting must be adopted for the shape factors α of the derivatives

- $i=1: \alpha=0.714 n s$ for all derivatives
- $i=2: \alpha=1.5 n s$ for $1^{\text {st }}$ derivative and $\alpha=0.314$ for $2^{\text {nd }}-15^{\text {th }}$ derivatives

2) the pulse repetition period ($\mathrm{Ts}=1 \mathrm{e}-7$)
3) the number of attempts in the random selection of the coefficients 'attempts' (attempts=100)

Meeting the emission mask

VIA RANDOM SELECTION

1. pick $\left\{a_{k}\right\}_{k=0}^{M-1}$ randomly,
2. evaluate the ESD and its PSD
3. select the PSD if it is below the emission mask
4. repeat 1 . to 3 . as many times as necessary
5. choose the sequence $\left\{a_{k}^{*}\right\}_{k=0}^{M-1}$ which leads to the highest PSD

Meeting the emission mask

VIA RANDOM SELECTION

To select the coefficients, write the function
[c, result]= random_coefficients (attempts, basefunction, dt, smp,
Ts,freqsmoothfactor, emissionmask, lowerbasefunction,higherbasefunction)

Inputs

1) the number of attempts in the random selection of the coefficients 'attempts' $=100$
2) the set of BFs 'basefunction' (15 normalized derivative function in time)
3) the sampling period ' dt^{\prime} ', given $\mathrm{Tmin}=-4 \mathrm{e}-9$ (Lower time interval limit),

Tmax $=4 \mathrm{e}-9$ (Upper time interval limit)
4) the number of samples in the time domain 'smp', = 1024
5) the pulse repetition period 'Ts'
6) the frequency smoothing factor 'freqsmoothfactor' =8 (FFTsize = freqsmoothfactor*smp)
7) the target emissionmask
8) and 9) the range of BFs to be used in the mask fitting, given by the values
'lowerbasefunction' and 'higherbasefunction'

Outputs

1) the best coefficient set ' c '
2) a flag on the validity of the returned set 'result'

Pulse Shaping

Meeting the emission mask
L via random selection

Example 1: all functions have same α

Pulse Shaping
Meeting the emission mask
L via random selection

Example 2: first derivative has larger α

Meeting the emission mask

VIA LSE

We might minimize the LSE in:
) in time-domain,

$$
\min \int_{-\infty}^{\infty}\left|m(t)-\sum_{k=0}^{M-1} a_{k} \psi_{k}(t)\right|^{2} d t
$$

>in frequency-domain,

$$
\min \int_{-\infty}^{\infty}\left|S_{m m}(f)-\sum_{k=0}^{M-1} \alpha_{k} \Psi_{k}(f)\right|^{2} d f .
$$

Meeting the emission mask

VIA LSE
Exercise 2.2: Write the function
LSE_pulse_comb(Ts,Tmin,Tmax,smp, frequencysmoothingfactor)
to implement the LSE selection algorithm for the determination of a combination of the first 15 Gaussian derivatives fitting the FCC indoor emission mask.
Settings:

$$
\begin{aligned}
& \text { Ts }=1 e-7 ; \text { Tmin }=-4 e-9 ; \\
& \text { Tmax }=4 e-9 ; \text { smp }=2^{\wedge} 12 ; \\
& \text { frequencysmoothingfactor }=4 ;
\end{aligned}
$$

Hints:

- Write the function
[timeemissionmask]=time_mask(Tmin,Tmax,smp)
to define the signal in the time domain corresponding to the FCC indoor emission mask in the frequency domain.
- Use the command lsqlin

Pulse Shaping
Meeting the emission mask
Lvia LSE minimization

Meeting the emission mask

 VIA LSE

