Practice #8 - November 05, 2021

Ultra Wide Band Radio Fundamentals

Pulse Shaping

DIET Department

イロト (日本) モント モント 日本 ののの

Outline

Gaussian envelope: properties

Meeting the emission mask via random selection via LSE minimization

Outline

Gaussian envelope: properties

Meeting the emission mask via random selection via LSE minimization

(ロ) (個) (E) (E) (E) (の)(C)

Gaussian envelope

The PSD envelope is deeply affected by the pulse shape.

There are three ways for spectral shaping:

- > pulse width variations,
- > pulse differentiation,
- > combination of **base functions**.

Due to the extremely shortness of pulses, **no modulation** is allowed.

The easiest and cheapest pulse is a bell-shaped pulse combined with its derivatives.

Gaussian pulse shape: time domain

The classical gaussian shape is:

$$g(t) := \mathcal{N}(0,\sigma^2)(t) = rac{1}{\sqrt{2\pi\sigma}} \exp\left(-rac{t^2}{2\sigma^2}
ight).$$

It can be shown by means of mathematical induction principle that:

$$\frac{d^n}{dt^n}g(t) = \frac{(-1)^n}{\sigma^n} \operatorname{H}_n\left(\frac{t}{\sigma}\right)g(t), \quad n \in \mathbb{N}$$

Let be $\sigma^2 = \alpha^2/4\pi$, with *shape factor* α : then,

- > the monocycle is g'(t);
- > the doublet is g''(t).

Pulse Shaping

Gaussian envelope: properties

Analytical expression of a Gaussian pulse $m(t) = \pm \frac{1}{2\pi^2} = \pm \frac{\sqrt{2}}{2\pi^2} = \pm \frac{\sqrt{2}}{2\pi^2} = \pm \frac{\sqrt{2}}{2\pi^2} = \frac{2\pi t^2}{\pi^2}$

$$p(t) = \pm \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}} = \pm \frac{\sqrt{2}}{\alpha} e^{-\frac{1}{\alpha^2}}$$

 $\alpha^2 = 4\pi\sigma^2$ is the shape factor

Pulse Shaping

Gaussian envelope: properties

Exercise 1.1: Check the effect of shape factor on pulse waveform and corresponding ESD

Write the function:

shape_factor_variation(alphamin, alphamax, N_alphavalues)

Settings

- alphamin = 0.4e-9
- alphamax = 1e-9
- N alphavalues = 7
- A = 1 %pulse amplitude
- smp = 1024 %number of samples
- Tmin = -4e-9 %lower time interval limit
- Tmax = 4e-9 %upper time interval limit

Exercise 1.1: results

Pulse Shaping

Gaussian envelope: properties

Exercise 1.2: Check the effect of differentiation:

- Represent waveforms and ESDs for the 15 first derivatives
 - alpha = 0.714e-9
- Plot *f*_{peak} as a function of alpha, for 15 derivatives. Verify that the maximum of the spectrum is reached at:

$$f_{peak,k} = \sqrt{k} \frac{1}{\alpha \sqrt{\pi}}$$

✤ Verify that the bandwidth @ -10 dB is only slightly dependent on derivative's order by plotting BW_{-10dB} [Hz] as a function of alpha, for 15 derivatives. Pulse Shaping

Gaussian envelope: properties

Exercise 1.2: Check the effect of differentiation

Hints

In time and frequency with 15 first derivatives
 HINT: create the functions:

Gaussian_derivatives(alpha) Gaussian_derivatives_ESD(alpha)

• max of the spectrum is reached at $f_{peak,k} = \sqrt{k} \frac{1}{\alpha \sqrt{\pi}}$ HINT: create the function:

[peakfrequency]=Gaussian_derivatives_peak_frequency(alphamin, alphamax, N_alphavalues)

✤ Plot the bandwidth @ −10 dB as a function of alpha:

HINTS: - create a function:

Gaussian_derivatives_10dB_bandwidth(alphamin, alphamax, N_alphavalues)

- use the routine **bandwidth** mod.

Amplitude [V]

Gaussian envelope: properties

Exercise 1.2: results

イロン イヨン イヨン トラ

Exercise 1.2: results on ESDs

イロン イヨン イヨン トラ

Exercise 1.2: results on peak frequency

- -

Exercise 1.2: results on peak frequency as a function of the derivation order

◆□ > ◆□ > ◆臣 > ◆臣 > ○日 ○ ○○○

Exercise 1.2: results on -10 dB bandwidth

イロン イヨン イヨン トラ

L Meeting the emission mask

Outline

Gaussian envelope: properties

Meeting the emission mask

via random selection via LSE minimization

Meeting the emission mask

Remind: Combining pulse width variation and differentiation

- Pulse width variation and differentiation allow to modify the PSD of the emitted signal
- A single waveform *p*(*t*) does not allow to achieve efficient power use at all frequencies
- A set of different waveforms p_k(t) (each corresponding to a different derivative with a different shape factor a_k) can be used to increase efficiency

Meeting the emission mask

Problem: choose $\{a_k\}_{k=0}^{M-1}$ such that the **ESD** of tx pulse

$$p(t) = \sum_{k=0}^{M-1} a_k p_k(t)$$

is as close as possible to the mask.

Possible approaches:

- > via random selection
- via LSE

- Meeting the emission mask

∟via random selection

Meeting the emission mask VIA RANDOM SELECTION

```
Exercise 2.1: Write a script/ function
```

```
[c, singlederiv, analyticalderiv, validresult, df] =
random_pulse_combination(i,Ts,attempts)
```

Purpose: The function yields the best coefficient set within the sets found during the 'attempts' iterations and the best coefficient for the solutions based on each single derivative

Returns:

- 1) the best coefficient set 'c'
- 2) the coefficients for the set formed by each single derivative 'singlederiv'
- 3) the set of analytical derivatives in time 'analyticalderiv'
- 4) a flag on the validity of the returned vectors 'validresult'
- 5) the fundamental frequency df

- Meeting the emission mask

∟via random selection

Meeting the emission mask

Exercise 2.1: Write a script/ function

```
[c, singlederiv, analyticalderiv, validresult, df] =
```

```
random_pulse_combination(i,Ts,attempts)
```

Settings:

- the index 'i' indicating which setting must be adopted for the shape factors α of the derivatives
 - $i=1: \alpha = 0.714$ ns for all derivatives
 - $i=2: \alpha = 1.5$ ns for 1st derivative and $\alpha = 0.314$ for 2nd-15th derivatives

2) the pulse repetition period (Ts=1e-7)

3) the number of attempts in the random selection of the coefficients 'attempts' (attempts=100)

L Meeting the emission mask via

 \Box random selection

Meeting the emission mask VIA RANDOM SELECTION

- 1. pick $\{a_k\}_{k=0}^{M-1}$ randomly,
- 2. evaluate the ESD and its PSD
- 3. select the PSD if it is below the emission mask
- 4. repeat 1. to 3. as many times as necessary
- 5. choose the sequence $\{a_k^*\}_{k=0}^{M-1}$ which leads to the highest PSD

(ロ) (型) (E) (E) (E) (O)

Pulse Shaping

L Meeting the emission mask

∟via random selection

Meeting the emission mask VIA RANDOM SELECTION

To select the coefficients, write the function

[c, result] = random_coefficients(attempts, basefunction, dt, smp, Ts,freqsmoothfactor, emissionmask, lowerbasefunction, higherbasefunction)

Inputs

- 1) the number of attempts in the random selection of the coefficients 'attempts' =100
- 2) the set of BFs 'basefunction' (15 normalized derivative function in time)
- 3) the sampling period 'dt', given Tmin = -4e-9 (Lower time interval limit),
- Tmax = 4e-9 (Upper time interval limit)
- 4) the number of samples in the time domain ${\rm 'smp'},$ = 1024
- 5) the pulse repetition period 'Ts'
- 6) the frequency smoothing factor 'freqsmoothfactor' =8 (FFTsize = freqsmoothfactor*smp)
- 7) the target emissionmask
- 8) and 9) the range of BFs to be used in the mask fitting, given by the values

<code>'lowerbasefunction'</code> and <code>'higherbasefunction'</code>

Outputs

- 1) the best coefficient set 'c'
- 2) a flag on the validity of the returned set 'result'

Meeting the emission mask

Lvia random selection

Example 1: all functions have same α

◆□ > ◆ □ > ◆ □ > ◆ □ > ○ □ ○ ○ ○ ○

Meeting the emission mask

∟via random selection

Example 2: first derivative has larger α

L Meeting the emission mask

Lvia LSE minimization

Meeting the emission mask VIA LSE

We might minimize the LSE in:

$$\min \int_{-\infty}^{\infty} \left| m(t) - \sum_{k=0}^{M-1} a_k \psi_k(t) \right|^2 dt ;$$

> in frequency-domain,

$$\min \int_{-\infty}^{\infty} \left| S_{mm}(f) - \sum_{k=0}^{M-1} \alpha_k \Psi_k(f) \right|^2 df$$

L Meeting the emission mask

Lvia LSE minimization

Meeting the emission mask VIA LSE

Exercise 2.2: Write the function

LSE_pulse_comb(Ts,Tmin,Tmax,smp, frequencysmoothingfactor)

to implement the LSE selection algorithm for the determination of a combination of the first 15 Gaussian derivatives fitting the FCC indoor emission mask.

Settings:

Ts = 1e-7; Tmin = -4e-9; Tmax = 4e-9; smp = 2^12; frequencysmoothingfactor = 4;

Hints:

Write the function

[timeemissionmask]=time_mask(Tmin,Tmax,smp)

to define the signal in the time domain corresponding to the FCC indoor emission mask in the frequency domain.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Use the command lsqlin

Meeting the emission mask

Lvia LSE minimization

Meeting the emission mask VIA LSE

