Ultra Wide Band Communications

university of Rome La Sapienza

School of Engineering

Practice 11

Ranging and Positioning with UWB

Main objective

• Study the accuracy of LSE positioning as a function of:

Ranging error

Number of reference nodes

Exercise 1

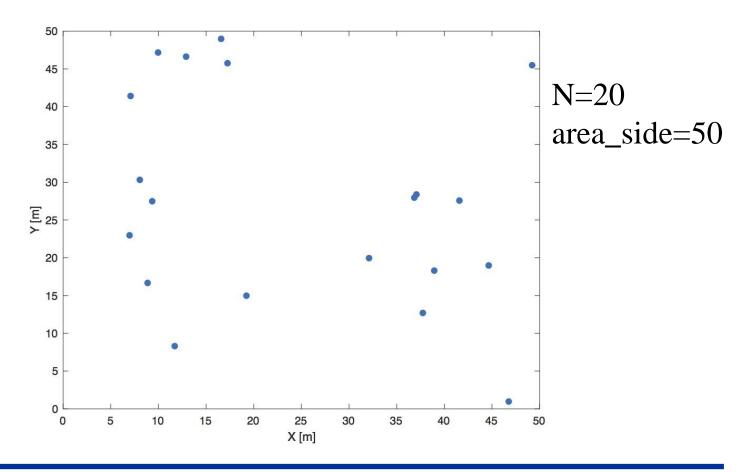
 Write a Matlab script that evaluates the average positioning error as a function of the ranging error variance

Parameter	Value
Simulation area	$50x50 \text{ m}^2$
Total number of nodes	10
Number of reference nodes	3
Ranging error variance σ^2	0:2:10
Number of iterations for each σ^2 value	5000

• Compare the results obtained when a) reference nodes and target are selected randomly at each iteration vs. b) they are selected once for each σ^2

Exercise 2

• Write a Matlab script that evaluates and plots the average positioning error as a function of the number of reference nodes N_{ref}

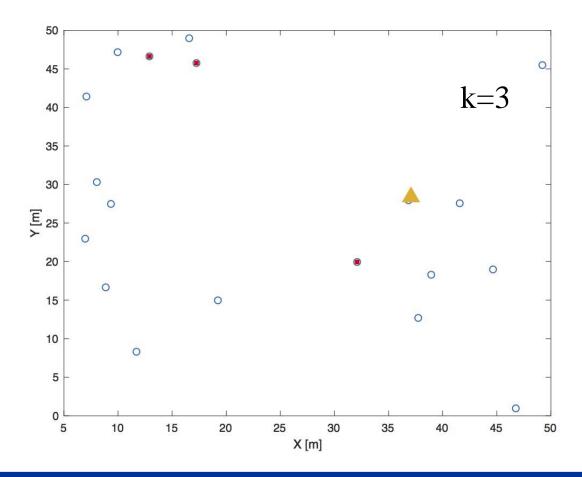

Parameter	Value
Simulation area	$50x50 \text{ m}^2$
Number of topologies N _t	100
Total number of nodes	10
Number of reference nodes N _{ref}	[3:2:9]
Ranging error variance σ^2	[2, 8]
Number of iterations N_i for each (σ^2, N_{ref}) combination	100

• What happens if one sets instead $N_t=1$, $N_i=10000$?

Support functions

function [positions, ranges] = create_network(N, area_side, G)

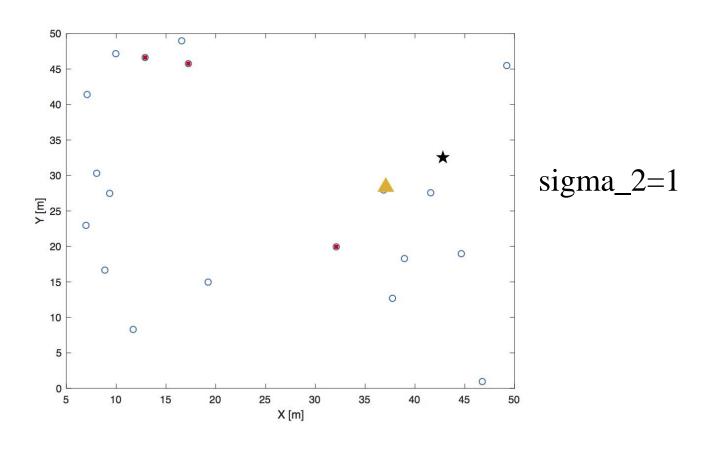
Generates a network topology in a square area



Support functions

function [Nx,Ref] = select_nodes(N,k)

Selects a target node and a set of reference nodes out of


N total nodes

Support functions

function [PosNx, ErrNx] = find_LSE_position(positions, ranges, Nx, Ref, sigma_2, G)

Estimates target position using LSE algorithm

